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Abstract

In this paper we introduce some well-known structural concepts on the set of
generalized neighbourhood sequences. Our main attempt is to perform the struc-
tural analyses by introducing a velocity function and a metric on this set. The
natural ordering compares the sequences according to the number of steps required
to reach one point from another. Intuitively, we can use the term ”faster” if a
sequence is larger than another one with respect to the ordering relation. This
consideration led us to define a velocity concept first, then define a metric by using
this new concept of velocity.

Categories and Subject Descriptors: 1.4 [Image Processing and Computer
Vision]; 1.5.5 [Pattern Recognition]: Special Architectures;

Key Words and Phrases: Digital Geometry, Neighbourhood Sequences, Dis-
tance, Metric

1 Introduction

The structural analysis of the set of neighbourhood sequences was begun by introducing
two types of ordering relations [1]. The first one compares two neighbourhood sequences
in a natural way, but it gives poor structural results with respect to lattice theory [3].
The second ordering relation has better results according to structural analyses, but has
less practical and intuitive meaning.
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Since practical applicability is evident in digital image processing, we involve the
natural ordering into our further investigations, in spite of its unkind properties with
respect to lattice theory. Our main attempt is to go on with our structural analyses by
introducing a metric on the set of the generalized neighbourhood sequences. The natural
ordering compares the sequences according to the number of steps required to reach one
point from another. Intuitively, we can use the term ”faster” if a sequence is larger than
another one under the ordering relation. This consideration led us to define a concept of
velocity, which shows the speed of a neighbourhood sequence. Using this new concept of
velocity, we introduce a metric on the set of neighbourhood sequences.

After introducing the metric, the usual investigations are performed, like checking
the completeness of the metric space, searching for the dense subsets of the metric space,
investigating the topological properties, and so on.

2 Basic concepts and definitions

In this section, we recall [1,2] some definitions about neighbourhood sequences that we
need in our forecoming analysis.

Definition 2.1 The infinite sequence A = (a;)52,, wherea; € {1,2,...,n} foralli € N,
15 called a generalized nD-neighbourhood sequence. Let S, be the set of the generalized
nD-neighbourhood sequences.

Remark 2.1 We recall [1,2] the notation

a; otherwise.

R ={ = izl

A natural ordering relation on the set of the neighbourhood sequences is defined by
comparing these f;(j) values for two neighbourhood sequences [3].

Definition 2.2 Let A, B € S,,. The f;(j) subsum values of the neighbourhood sequences
A and B are denoted by f(j) and f2(j), respectively. We define the relation J* in the
following way:

AT B e fAU)>P6)

forallie N and j € {1,...,n}. We say that A is faster than B, if A J1* B.

3 Preliminaries to introduce metric and velocity

When we define velocity, we assign a real number to every neighbourhood sequence. It
means, we should define a real valued function, which can be given in several ways. Using
the concept of velocity, we define a metric on the set of neighbourhood sequences,; which
can be done in many ways, as well. The construction of velocity and metric is a bit
like the traditional procedure of introducing a norm on the space first, then deducing a
metric from the norm. Our construction is similar to this procedure, since we deduce the
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metric from the velocity function. The main difference we have here is that the velocity

function does not meet the conditions to be a norm.

Since the velocity function and the distance of two neighbourhood sequences can be
defined in several ways, we try to take some natural preconditions under consideration

to obtain an intuitively obvious velocity and distance function. In this section we list our

preconditions, and explain in details the importance of each of these points.

1.

It is not the particular elements of the sequence that are important, but the average
behavior of the whole neighbourhood sequence.

This condition expresses that we do not focus on the individual elements of the
neighbourhood sequence, but try to consider the sequence as a whole. According to
this consideration, we use average values in the definitions, instead of the particular
elements.

. It is recommended to weigh the members of the sequence with a suitable weight

function.

We have two reasons to establish this precondition, which are in close connection.
First, we probably have to emphasize the initial elements of the sequence more,
than the elements, which occur later in the sequence. It is because in practical
applications, presumably the first elements have greater importance, since this is
the beginning of the moving, and we do not take much care about the behavior
of the neighbourhood sequence after a large number of steps. The second reason,
why we weight the elements, comes from theoretical necessity. Namely, to measure
the velocity of a neighbourhood sequence, we have to consider the sum of its ele-
ments, or a similar measure. Since neighbourhood sequences have positive integer
elements, we have to guarantee the convergence of a such a serie. Weighting the
elements 1s the most natural way to obtain convergence limit for these sequences.
As we shall see it later, we need to use weight functions that tend to 0. Using a
weight function like that, also have the meaning that we attach more importance
to the starting elements of a neighbourhood sequence.

. Velocity should define with respect to the “faster” ordering.

This 1s a very natural condition, which requires that velocity should preserve the
ordering relation, introduced above. If a neighbourhood sequence is ”faster” than
another one, its velocity should be larger, as well.

. Velocity should be sensitive to dimension.

The concept of velocity can be relative according to the dimension, in which we
consider the motion. Though a sequence can be faster in higher dimension, than
another one, it may happen that they have the same velocity in a lower dimensional
subspace. TFor example, in 3D the sequences (3,3,3,3,...) and (2,2,2,2,...) have
the same velocity on the planes, defined by the coordinate axes, or the sequences
(1,3,1,3,...) and (2,2,2,2,...) behave differently in different subspaces.

. The metric on the set of the neighbourhood sequences should be defined by the

concept of velocity.

Similarly to the introduction of deducing a metric from a norm, we deduce the
metric from the velocity function by taking the difference between velocity values
of the two neighbourhood sequences.
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4 Assigning velocity to neighbourhood sequences

Considering precondition 4, discussed in Section 3, we define the concept of velocity in
two steps. First, we define an nD velocity vector for every neighbourhood sequence,
which elements reflect the velocity of the given neighbourhood sequence in the lower
dimensional subspaces, in dimensions from 1 to n. Then, to reach our main aim, we
make the average value of these n vector elements to have one descriptive velocity value
for every neighbourhood sequence.

Definition 4.1 Let A be an nD-neighbourhood sequence. The weighted velocity of the
sequence A in dimension j is defined as

- [ ()
k=1
where j € {1, ... ,n}, and > ,~, (k) < oo, with §(k) > 0, for all k € N.

Remark 4.1 The definition constructed above, has strong relationship with the common
velocity concept used in physics. As a natural procedure, velocity is calculated as the
ratio of the distance taken and the time. In our definition we use this consideration,
since f,f (7) is the distance, the neighbourhood sequence A takes after k steps, and the
number of steps k s actually the time, the neighbourhood sequence used to take this
distance.

Definition 4.2 To obtain one descriptive velocity value, we can consider the average
value of the weighted velocity values in different dimensions:

n A
v
UA: E £ .
- n
j=1

Remark 4.2 From the definition of vj‘ we can see, how preconditions 1, 2 and j are

met. Since v is deduced from the vj‘ values, v4 also meets these preconditions.

1. Since we use the subsum values f(j) in the definition, we consider the whole
sequence instead of the particular elements.

2. To weigh the elements of the sequence we use the weight function d(k), which pro-
vides the convergence of the serie. Moreover, as a necessary condition this weight
function has to tend to 0, so the elements that occur later in the sequence have less
wetght.

8. The result is presented in Theorem 4.1.

4. The nD velocity vector, defined above, s trivially sensitive to dimension, since
we calculate the velocity of a neighbourhood sequence in every lower dimensional
subspaces.

Precondition 3 contains the natural requirement that the sequence A should have
larger velocity value than B, if A is "faster” than B (A J* B). The following theorem
shows, that the above definitions of velocity meet this requirement, as well.
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Theorem 4.1 Let A, B be two n-dimensional neighbourhood sequences. Then
AT*B=vt>0P, and Ag*ijf va, Vied{l, ... ,n}.

Proof. From the definition of the ordering relation, if A J* B, then f#(j) > f2(j) for
all j € {1, ... ,n}, i € N. Thus for every j € {1, ... ;n} the members of the serie vj‘
are not smaller, than the corresponding members of the serie vf. Since v4 and v is the
average of these values, respectively, the proof is complete.

Remark 4.3 The opposite statement of Theorem 4.1 does not hold, since the ordering
relation 3% 1s only a partial ordering, so not every two neighbourhood sequences can be
compared.

5 Metric space of neighbourhood sequences

According to precondition 5, we introduce a metric on the set of neighbourhood sequences
by using the concept of velocity. The way, we introduce this metric, is similar to the
common procedure, when a metric is obtained from a norm.

Definition 5.1 Let A and B be two nD-neighbourhood sequences. The distance of these
sequences s defined by the following formula:

nooymoo G- FZGN s,
Q(A’B) — Z]:l Zk::l k ( )’

n

where S"p7 (k) < oo, with §(k) > 0, for allk € N.

Remark 5.1 The above defined distance function is a metric on the set of the neighbour-
hood sequences. This fact is an tmmediate consequence of the properties of the absolute
value operation.

5.1 Topological properties of the metric space

In this subsection we investigate the topological and structural properties of the metric
space of the neighbourhood sequences. We check the completeness, searching for the
dense subsets of the metric space, and making some more usual analyses.

Theorem 5.1 (S,,¢) is a complete metric space.

Proof. We prove the theorem by showing that every Cauchy sequence has a convergence
limit. Our proofis constructive, so we show how to obtain this limit sequence. Let (A4;)$2,
be a sequence with ViA; € S,. Suppose that the sequence (A4;)52, is a Cauchy sequence
in (Sp, ). Let € > 0. Since (A;)$2, is a Cauchy sequence there exists k € N such that
0(Am, An) < e if m,n > k. The sequences A,, with m > k have the property that their
first finitely many elements are equal. The number of the same elements depends on the
volume of . Let us construct the convergence limit sequence form these same elements.
By letting ¢ — 0 we can obtain the limit sequence. With this construction, for a given
e > 0 we choose the same k£ € N as in the case of the Cauchy sequence to proof the

convergence.
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Theorem 5.2 Every bounded monotone sequence (A;)52, with YiA; € S, has a conver-
gence limat.

Proof. The construction of the limit sequence can be performed in the same way as in
the proof of Theorem 5.1.

In our next theorem we check, whether the Bolzano property is met in our metric
space.

Theorem 5.3 FEvery bounded subset of S, with infinite cardinality has an accumulation
point.

Proof. Like in the previous proves, we give an explicit method to construct this accu-
mulation point. Let S = {A; | A; € S,,7 € T}, where I is a non finite set of indices. For

the first element of the accumulation sequence let us choose the element a; € {1, ...  n}
which is the first element of infinitely many A; € S sequences. For the kth element
(k € N) of the accumulation point let us choose the element a5 € {1, ... ;n} which is

the kth element of infinitely many such A; € S sequences, whose first & — 1 elements are
ai,as, ... ,ag_1, respectively.

We go on with searching for the dense subsets of S,. In the past, only periodic
sequences were investigated, so first we check this subset of .S, .

Since the neighbourhood sequences can be modeled by real numbers from the interval
[0, 1], we could use real numbers instead of neighbourhood sequences and the interval [0, 1]
instead of S,. A periodic sequence corresponds to a rational number, and a rational
number corresponds to an almost periodic neighbourhood sequence (a sequence, which
is periodic after ignoring its first finitely many elements).

Theorem 5.4 The set of periodic neighbourhood sequences is dense in S, .

Proof. Let A € S, and ¢ > 0. Let us construct a sequence B in the following way.
Let the first &k elements of B equal to the first k& elements of A, respectively, and let
the remaining elements of B arbitrary, such that g(A, B) < e. Because of the definition
of ¢ such a k always exists. Since the elements of B from the index & 4+ 1 were chosen
arbitrarily, thus we can choose these elements, so the sequence B will be periodic, with
period k. So we found a periodic sequence B for which g(A, B) < &, which completes
our proof.

Remark 5.2 Since the set of periodic neighbourhood sequences is a subset of the set of
almost periodic neighbourhood sequences, the latter set is also dense in S, .

6 Conclusion

Neighbourhood sequences can be effectively used in approximating continuos Euclidian
metrics by digital metrics, so they have become important in digital geometry. In this
paper we present some new concepts on the set of neighbourhood sequences. By introduc-
ing velocity and metric we can compare neighbourhood sequences more precisely, than
using only an ordering relation for this comparison. The introduced concepts connect
to the structure of neighbourhood sequences in a natural way, and give us new tools to
analyse the set, the neighbourhood sequences form.
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