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1 Introdu
tionIn 2-dimensional digital appli
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tion on Z2. Thus the investigation of digitaldistan
e fun
tions and metri
s be
omes more and more important. See e.g. thesurvey paper [10℄ of Melter for an a
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most essential tasks is to give a 
onvenient digital metri
, whi
h approximatesthe Eu
lidean metri
 L2 on Z2 well.In [13℄ Rosenfeld and Pfaltz introdu
ed the digital metri
s d4 and d8 in Z2,based on 
ityblo
k and 
hessboard motions, respe
tively. Cityblo
k motionallows movements only in horizontal and verti
al dire
tions, while 
hessboardmotion in diagonal ones, as well. The distan
e of two points is the numberof steps required to rea
h either point from the other. To obtain a betterapproximation of L2, Rosenfeld and Pfaltz re
ommended the alternate use of
ityblo
k and 
hessboard motions, whi
h de�nes the do
t distan
e.By allowing arbitrary periodi
 mixture of these motions, Das et al. [4℄ in-trodu
ed the 
on
ept of periodi
 neighbourhood sequen
es. In [8℄ Fazekas etal. de�ned the notion of general (not ne
essarily periodi
) neighbourhood se-quen
es. The main advantage of these sequen
es over the 
lassi
al motionsis that they provide more 
exibility in moving on the plane. Making use ofthis property, Das [3℄ and Mukherjee et al. [11℄ determined distan
e fun
tionsthat provide good approximations of the Eu
lidean distan
e in a 
ertain sense.However, in these papers only periodi
 neighbourhood sequen
es were used.In this paper we perform an approximation of the 2D Eu
lidean distan
e bydistan
e fun
tions d(A) based on general (non-periodi
) neighbourhood se-quen
es A. In 
ontrast with results obtained using periodi
 sequen
es (see e.g.[1,3,6,11℄ and the referen
es given there), in this way we 
an give the a
tuallybest approximating sequen
e, instead of a �nite part of it. This allows us toformulate more pre
ise statements, and obtain better results. In fa
t we dis-tinguish two types of approximation. On one hand, we investigate the generalsituation, i.e. the problem of �nding a digital metri
 d(A) whi
h approximatesL2 best. On the other hand, we 
onsider the problem of approximating L2from below, separately. In the latter 
ase the problem is to �nd the digitalmetri
 d(A) minorating L2 on Z2, whi
h approximates L2 best.To measure the error of approximation, we 
ompare the disks of radii k withk 2 N of L2, and of the distan
e fun
tions d(A). A similar but slightly di�erenterror fun
tion was used by Das and Chatterji [6℄, and Mukherjee et al. [11℄for periodi
 neighbourhood sequen
es. Interestingly, the best approximatingsequen
es we obtain are (mostly) Beatty sequen
es, thus they 
an be 
on-stru
ted very easily. For ea
h type of approximation under 
onsideration wegive neighbourhood sequen
es su
h that the 
orresponding distan
e fun
tionsare metri
s on Z2. Thus we get good approximation of the Eu
lidean distan
eby digital metri
s. In parti
ular, we determine the digital metri
 d(A), bestapproximating L2 from below "uniformly", i.e. independently of the sense ofapproximation (see Problem 3 and Theorem 6).The stru
ture of the paper is as follows. In the se
ond se
tion we introdu
e our2



notation. In the third se
tion we formulate three problems, whi
h summarizeour aims in a pre
ise form. In the fourth se
tion we solve these problems, bygiving the best approximating neighbourhood sequen
es. In the last se
tionwe 
ompare the sequen
es obtained with those re
ommended by Das in [3℄,and Mukherjee et al. in [11℄. As we use a di�erent method to measure theerror of the approximation than the authors in [3℄ and [11℄, we 
hoose a thirdtype of error fun
tion to this purpose.2 Basi
 
on
epts and notationFirst we re
all some de�nitions and notation from [4℄ and [8℄.Let q be a point in Z2. The i-th 
oordinate of q is denoted by Pri(q) (i =1; 2). Let M 2 f0; 1; 2g. The points q; r 2 Z2 are 
alled M -neighbours, if thefollowing two 
onditions hold:� jPri(q)� Pri(r)j � 1 (i = 1; 2),� jPr1(q)� Pr1(r)j+ jPr2(q)� Pr2(r)j �M .The sequen
e A = (a(i))1i=1, where a(i) 2 f1; 2g for all i 2 N , is 
alled a 2-dimensional (shortly 2D) neighbourhood sequen
e. If for some l 2 N , a(i+l) =a(i) (i 2 N), then A is periodi
 with period l. In this 
ase we brie
y writeA = (a(1); a(2); : : : ; a(l)). The set of the 2D-neighbourhood sequen
es will bedenoted by S2.Let q; r 2 Z2 and A 2 S2. The point sequen
e q = q0; q1; : : : ; qm = r, whereqi�1 and qi are a(i)-neighbours in Z2 (1 � i � m), is 
alled an A-path oflength m from q to r. The A-distan
e d(q; r;A) of q and r is de�ned as thelength of the shortest A-path(s) between them. We shortly write d(A) forthe distan
e fun
tion generated by the neighbourhood sequen
e A. In generald(A) is not a metri
 on Z2, however, by a theorem of Nagy [12℄ we 
an 
he
kthis property. Nagy's result des
ribes the general nD 
ase, but we formulate itonly for 2D. Note that this assertion was proved by Das et al. [4℄ for periodi
neighbourhood sequen
es.Theorem 1 (see [12℄) Let A 2 S2. Then d(A) is a metri
 on Z2 if and onlyif for any s; t 2 N sXi=1 a(i) � s+t�1Xi=t a(i):Let q; r 2 Z2. As usual, the Lp (p > 0) distan
e of q and r is de�ned byLp(q; r) = (jPr1(q)� Pr1(r)jp + jPr2(q)� Pr2(r)jp) 1p ;3



and L1(q; r) = maxfjPr1(q)� Pr1(r)j; jPr2(q)� Pr2(r)jg:We have Lp1 � Lp2 for every q; r 2 Z2, provided that p1 � p2.Obviously,L1(q; r) = d4(q; r) = d(q; r; (1)) and L1(q; r) = d8(q; r) = d(q; r; (2)):The 
onstant periodi
 neighbourhood sequen
es (1) and (2), respe
tively,spread in the slowest and fastest way in Z2 among the 2D-neighbourhoodsequen
es. So for every A 2 S2 we have L1(q; r) � d(q; r;A) � L1(q; r). It isa natural problem to �nd the neighbourhood sequen
es, whose distan
e fun
-tions approximates the 2D Eu
lidean distan
e L2 best in some sense. On theother hand, as we already mentioned in the introdu
tion, su
h sequen
es haveimportant pra
ti
al appli
ations as well. To handle this problem, we 
omparethe regions o

upied by a sequen
e A 2 S2 with the Eu
lidean disks. As theneighbourhood sequen
es spread in Z2 in a translation invariant way, we may
hoose the origin 0 2 Z2 as the starting point. For illustration, Figure 1 showsthat the metri
 do
t (generated by (1; 2)) is "
loser" to L2, than d4 or d8.
Fig. 1. The regions o

upied by the neighbourhood sequen
es (1), (2) and (1; 2)after two steps.Let A 2 S2. For every k 2 N , letAk = fq 2 Z2 : d(0; q;A) � kgdenote the region o

upied by A after k steps, and write H(Ak) for the 
on-vex hull of Ak in R2 . Observe that H(Ak) in general is an o
tagon whi
h issymmetri
 to the 
oordinate axes and to the lines y = x and y = �x in the[x; y℄ plane. Let Ok = fq 2 Z2 : L2(0; q) � kgand Gk = fq 2 R2 : L2(0; q) � kgbe the disks of radius k in Z2 and R2 , respe
tively. The sets Ak and Ok willbe 
alled the k-disks of the distan
es d(A) and L2, respe
tively.4



We will often use the number of 1 and 2 values o

urring among the �rst kelements of a neighbourhood sequen
e A. So for every k 2 N put1A(k) = jfa(i) : a(i) = 1; 1 � i � kgjand 2A(k) = jfa(i) : a(i) = 2; 1 � i � kgj;where A = (a(i))1i=1. For 
onvenien
e, write 1A(0) = 2A(0) = 0. Note that1A(k) + 2A(k) = k (k 2 N).For any x 2 R, let bx
 denote the largest integer whi
h is less than or equal tox, and dxe the smallest integer whi
h is greater than or equal to x. Let � 2 Rwith 0 � � � 1, and let A = (a(i))1i=1, B = (b(i))1i=1 be sequen
es of 1-s and2-s, de�ned bya(i) = bi�
 � b(i� 1)�
+ 1; b(i) = di�e � d(i� 1)�e+ 1 (i 2 N):The sequen
es A;B are 
alled Beatty sequen
es on the letters 1, 2. Clearly,for every k 2 N we have2A(k) = bk�
 and 2B(k) = dk�e:Conversely, these equalities de�ne Beatty sequen
es whi
h are uniquely deter-mined. We refer to [9℄ for the basi
 properties of Beatty sequen
es and theirgeneralizations.3 Three approximation problemsTo de
ide how a digital distan
e d(A) approximates the Eu
lidean distan
eL2 on Z2, we 
ompare the k-disks Ak and Ok. A natural approa
h 
ould beto 
hoose the number of integer points in the symmetri
 di�eren
e Ak 5 Okas an error fun
tion. However, there is no exa
t formula for the number ofinteger points inside Ok. So we follow a slightly di�erent method whi
h is avariant of that used in [6℄ and [11℄. Namely, we 
ompare the sets H(Ak) andGk, and 
hoose A to minimize the area of H(Ak)5 Gk. Of 
ourse, it 
an bedone only separately for ea
h k. However, surprisingly it turns out that forevery k 2 N the very same A 
an be 
hosen to minimize this area. So thisneighbourhood sequen
e A 
an be regarded as the one that approximates L2best (in the above sense).A

ording to the these prin
iples, we investigate the fun
tionTEA(k) = Area(H(Ak)5Gk);5




alled the total error of the approximation at the k-th step. We also use therelative error at the k-th step, de�ned asREA(k) = TEA(k)k2� ;and the limit relative error (if it exists)REA = limk!1REA(k):We note that the authors in [6℄ and [11℄, instead of measuring the area of thesymmetri
 di�eren
e H(Ak)5Gk, simply took the di�eren
e jArea(H(Ak))�Area(Gk)j as an error fun
tion. Clearly, our approa
h is more sensitive to the"mat
hing" of H(Ak) and Gk. It also should be mentioned that in [6℄ and[11℄ additional error fun
tions, su
h as perimeter error and shape error were
onsidered, as well.We perform several types of approximation. Our aims 
an be summarized inthe following problems. The �rst problem 
on
erns the general 
ase.Problem 1. Find a neighbourhood sequen
e A(1) 2 S2 (if exists) su
h that forevery B 2 S2 and k 2 NArea(H(A(1)k )5Gk) � Area(H(Bk)5Gk):We 
onsider separately the 
ase when the o
tagons H(Ak) 
over Gk for everyk 2 N , that is the 
orresponding fun
tion d(A) minorates L2.Problem 2. Find a neighbourhood sequen
e A(2) 2 S2 (if exists) su
h thatH(A(2)k ) � Gk for every k 2 N, and for every B 2 S2, H(Bk) � Gk impliesthat Area(H(A(2)k ) nGk) � Area(H(Bk) nGk):Note that it does not make sense to 
onsider a problem with H(Ak) � Gk.Indeed, observe thatH(Ak) is 
ontained inGk if and only if the �rst k elementsof A are all 1-s. This is the reason why we do not take up the problem ofmajorating L2 by digital metri
s d(A).Figure 2 illustrates Problems 1 and 2.We will 
onstru
t two neighbourhood sequen
es, satisfying the requirementsof Problems 1 and 2, respe
tively. Moreover, we will give a sequen
e su
h that6



(a) (b)Fig. 2. The error of approximation (a) in the general 
ase (b) when H(Ak) � Gk.the 
orresponding distan
e fun
tion is a metri
, and it 
an be 
onsidered asthe digital metri
 whi
h approximates L2 best in the sense of Problem 1.We also investigate the following "dis
rete" version of Problem 2. Note thatProblem 1 does not have a similar variant.Problem 3. Find a neighbourhood sequen
e A(3) 2 S2 (if exists) su
h thatA(3)k � Ok for every k 2 N, and if B 2 S2 with Bk � Ok, then Bk � A(3)k .Observe that the sequen
e A(3) has the ni
e property that the 
orrespondingdistan
e fun
tion d �A(3)� is "uniformly" the best one to approximate L2 frombelow. That is, for any B 2 S2, ifd(q; r;B) � L2(q; r) for any q; r 2 Z2; thend(q; r;B) � d �q; r;A(3)� for any q; r 2 Z2:In Theorem 6 we will solve Problem 3, by 
onstru
ting the sequen
e A(3)having the desired property. Interestingly, it will turn out that the distan
efun
tion d(A(3)) is a metri
 on Z2. To show this, the following lemma will beuseful.Lemma 2 Let � 2 R with 0 � � � 1, and let A 2 S2 be the unique sequen
ewith 2A(k) = bk�
 for every k 2 N . Then d(A) is a metri
.PROOF. Suppose to the 
ontrary that d(A) is not a metri
. Then usingTheorem 1, for some n;N 2 N with n < NnXi=1 a(i) > NXi=N�n+1 a(i) (1)7



holds. Clearly, we may suppose that N � n+ 1 > n. We rewrite (1) as2A(n) > 2A(N)� 2A(N � n): (2)As all the numbers in (2) are integers, we obtain2A(N � n) � 2A(N) + 1� 2A(n): (3)Observe that by the de�nition of A, for every k 2 N we have2A(k) � k� < 2A(k) + 1: (4)Combining (3) and (4), we get(N � n)� � 2A(N � n) � 2A(N) + 1� 2A(n) > N� � n�whi
h is a 
ontradi
tion. Hen
e the lemma follows. 24 The solution of the approximation problemsIn this se
tion we 
onstru
t "extremal" sequen
es des
ribed in Problems 1, 2and 3. We start with Problem 2, as it is the simplest to handle.4.1 Approximating L2 from belowIn this subse
tion we 
onsider only neighbourhood sequen
es A with H(Ak) �Gk for all k 2 N . As we have already mentioned, it means that the 
orrespond-ing distan
e fun
tion d(A) minorates L2. The next result gives a solution toProblem 2.Theorem 3 Let A(2) = (a(2)(i))1i=1 be the unique 2D-neighbourhood sequen
ede�ned by 2A(2)(k) = dk(p2� 1)e (k 2 N), that isa(2)(i) = di(p2� 1)e � d(i� 1)(p2� 1)e+ 1 (i 2 N):Then H(A(2)k ) � Gk for any k 2 N, and B 2 S2, H(Bk) � Gk implies thatArea(H(A(2)k ) nGk) � Area(H(Bk) nGk):8



PROOF. Let k be a �xed positive integer, and let B 2 S2 be arbitrarysu
h that H(Bk) 
ontains Gk. Clearly, the verti
es of H(Bk) with positive
oordinates are (k; 2B(k)) and (2B(k); k). Hen
e H(Bk) � Gk implies thatthe line x + y = k + 2B(k) has at most one point in 
ommon with the 
ir
lex2+y2 = k2 in the [x; y℄-plane. A simple 
al
ulation gives that it is equivalentto (k � 2B(k))2 � 2 (2B(k))2 � 0; (5)that is 2B(k)=k � p2� 1.One 
an easily 
he
k (see also [1,6,11℄) that Area(H(Bk)) = 4k2�2(k�2B(k))2,when
e the total error of the approximation isTEB(k) = 4k2 � 2(k � 2B(k))2 � �k2: (6)Clearly, TEB(k) is minimal, when 2B(k) is minimal. Taking into 
onsiderationthat 2B(k)=k � p2� 1 and 2B(k) is an integer, we obtain that TEB(k) takesits minimum when 2B(k) = dk(p2� 1)e. Hen
e the theorem follows. 2Figure 3 shows how the o
tagons H(A(2)k ) of the neighbourhood sequen
e A(2)de�ned in Theorem 3 approximate Gk for k = 2; 5; 7; 9; 12. The dark regionsshow the error of the approximation.

Fig. 3. Approximating Gk by H(A(2)k ) for k = 2; 5; 7; 9; 12.Remark 4 The o
tagonsH(A(2)k ) are almost regular. (For regularity we shouldhave 2A(k) = k(p2� 1), whi
h is impossible.) Obviously, the ratio of the in-
lined and horizontal (or verti
al) sides of H(A(2)k ) tends to 1 as k ! 1. Itwas already noted by Rosenfeld and Pfaltz [13℄ that the "best approximating"sequen
e should have su
h property. A detailed study in this dire
tion with pe-9



riodi
 sequen
es under slightly di�erent 
ir
umstan
es was performed by Dasand Chatterji [6℄.Remark 5 For the k-th total error of the approximation of L2 with d(A(2))we get TEA(2)(k) = (4� �)k2 � 2 (k � 2A(2)(k))2 :Thus for the k-th relative error and for the relative error we obtainREA(2)(k) = 4� �� � 2�  1� 2A(2)(k)k !2and REA(2) = 8(p2� 1)� �� = 0:054786175:::By the following theorem we solve Problem 3.Theorem 6 Let A(3) 2 S2, A(3) = (a(3)(i))1i=1 be the unique sequene de�nedby 2A(3)(k) = bk(p2� 1)
 (k 2 N), that isa(3)(i) = bi(p2� 1)
 � b(i� 1)(p2� 1)
+ 1 (i 2 N):Then for every k 2 N, Ok � A(3)k . Moreover, if B 2 S2 su
h that Ok � Bk forsome k 2 N, then A(3)k � Bk.PROOF. Let k 2 N be �xed, and suppose that Ok 6� A(3)k . Let A(2) be theneighbourhood sequen
e de�ned in Theorem 3. Then, as A(2)k � Ok, thereexists an integer point q of Ok, whi
h is also in A(2)k n A(3)k . Sin
e 2A(2)(k) =2A(3)(k) + 1, q must be on the border of A(2)k .Moreover, by H(A(2)k ) � Gk, the only possibility is that q is the tangent pointof Gk and one of the in
lined sides of H(A(2)k ). Using symmetry, this impliesthat q belongs to one of the lines y = x or y = �x. However, the points beingboth on the perimeter of Gk and on one of these lines, do not have integer
oordinates. This 
ontradi
tion shows that Ok � A(3)k for every k 2 N .To prove the se
ond statement, we show that for any k 2 N , every in
linedside of A(3)k 
ontains an integer point from Ok. To this purpose, observe thatas 2A(3)(k)=k < p2� 1, we have(k � 2A(3)(k))2 � 2 (2A(3)(k))2 > 0: (7)Comparing (7) with formula (5), we get that every in
lined side of H(A(3)k ) hastwo points in 
ommon with the perimeter of Gk. A simple 
al
ulation yields10



that the interse
tion points with positive 
oordinates are k + 2A(3)(k) +Q2 ; k + 2A(3)(k)�Q2 !and  k + 2A(3)(k)�Q2 ; k + 2A(3)(k) +Q2 ! ;where Q = q(k � 2A(3)(k))2 � 2(2A(3)(k))2:For the distan
e D of these points we obtainD = q2[(k � 2A(3)(k))2 � 2(2A(3)(k))2℄:As k and 2A(3)(k) are integers, by (7) we infer that(k � 2A(3)(k))2 � 2 (2A(3)(k))2 � 1whi
h yields D � p2. As the line 
ontaining the above interse
tion points isgiven by x + y = k + 2A(3)(k) on the [x; y℄ plane, D � p2 implies that thereis at least one integer point on the 
orresponding in
lined side of H(A(3)k ),whi
h also belongs to Gk. This shows that if B 2 S2 with Bk � Ok, then2B(k) � 2A(3)(k) must be valid. Thus Bk � A(3)k , and the theorem follows. 2Remark 7 By Lemma 2, d(A(3)) is a metri
 on Z2. That is, among the digitalmetri
s 
orresponding to neighbourhood sequen
es, d(A(3)) is the best one toapproximate L2 from below in Z2. More pre
isely, the following two propertieshold:� for all x; y 2 Z2 we have d(x; y;A(3)) � L2(x; y),� if d(A) is any metri
 
orresponding to some A 2 S2 andd(x; y;A) � L2(x; y) for all x; y 2 Z2;then d(x; y;A) � d(x; y;A(3)) for all x; y 2 Z2:4.2 The general 
aseIn this subse
tion we solve Problem 1. For this purpose the following lemmawill be useful. 11



Lemma 8 De�ne the fun
tion E : [0; 1℄! R byE(y) = 8>>>>><>>>>>: 2y � y2; if y � p2� 1,2 ar

os(y(y + 2))�2(y + 1)p1� 2y � y2 � y2 + 2y; otherwise.Then E(y) has a global minimum at y0 = 2p6�35 . Moreover, E(y) is stri
tlymonotone de
reasing in [0; y0℄ and stri
tly monotone in
reasing in [y0; 1℄.PROOF. Observe that E(y) is 
ontinuous on [0; 1℄. Taking the derivative ofE on the intervals [0;p2�1℄ and [p2�1; 1℄ separately, by a simple 
al
ulationthe lemma follows from elementary 
al
ulus. 2Theorem 9 Let the neighbourhood sequen
e A(1) = (a(1)(i))1i=1 be de�ned bya(1)(i) = 8><>: 1; if E �2A(1)(i�1)i � < E �2A(1) (i�1)+1i �,2; otherwise,where E is introdu
ed in the previous lemma. Then for any B 2 S2 and k 2 N ,Area(H(A(1)k )5Gk) � Area(H(Bk)5Gk):PROOF. Let k be a �xed positive integer and B 2 S2. Using (6) when thein
lined sides of H(Bk) do not interse
t Gk, and by a simple 
al
ulation in theopposite 
ase, we obtain that the k-th total error of the approximation of L2by B isTEB(k) = 8>>>>><>>>>>: 2k2 � �k2 + 2k2(2y � y2); if y � p2� 1,2k2 � �k2 + 2k2(2 ar

os(y(y + 2))�2(y + 1)p1� 2y � y2 � y2 + 2y); otherwise,where y = 2B(k)=k.Clearly, TEB(k) is minimal if and only if E(y) is minimal for B. By Lemma 8mint2Z0�t�k E � tk� = min(E  bky0
k ! ; E  dky0ek !) ; (8)where y0 = 2p6�35 . 12



We prove that for every k 2 N , 2A(1)(k) = bky0
 or dky0e a

ording to whetherE  bky0
k ! < E  dky0ek ! ;or not. By (8) this will imply that E(y) is minimal for A(1), when
e TEA(1)(k) �TEB(k) for every B 2 S2 and k 2 N .We pro
eed by indu
tion on k. For k = 1 the statement is obvious: a(1)(1) = 2and E(1) < E(0). Suppose that for some k we have 2A(1)(k) = bky0
; the 
asewhen 2A(1)(k) = dky0e is similar. Then, by the indu
tion hypothesis,E  bky0
k ! < E  dky0ek ! = E  bky0
 + 1k ! : (9)We distinguish two 
ases.(i) Assume �rst that bky0
 = b(k + 1)y0
 < d(k + 1)y0e = dky0e.Now if E  bky0
k + 1! < E  bky0
+ 1k + 1 ! ; (10)then by de�nition a(1)(k + 1) = 1, when
e2A(1)(k + 1) = 2A(1)(k) = bky0
 = b(k + 1)y0
:Sin
e we 
an write (10) asE  b(k + 1)y0
k + 1 ! < E  d(k + 1)y0ek + 1 ! ;the statement is also true for k + 1. On the other hand, ifE  bky0
k + 1! � E  bky0
+ 1k + 1 ! ; (11)then we obtain a(1)(k + 1) = 2. By 2A(1)(k) = bky0
, this yields2A(1)(k + 1) = 2A(1)(k) + 1 = dky0e = d(k + 1)y0e:Now the statement for k + 1 follows from rewriting (11) asE  d(k + 1)y0ek + 1 ! � E  b(k + 1)y0
k + 1 ! :(ii) Assume now that bky0
 < dky0e = b(k + 1)y0
 < d(k + 1)y0e.13



In this 
ase we havebky0
k + 1 < bky0
k < b(k + 1)y0
k + 1 < y0 < dky0ek � d(k + 1)y0ek + 1 : (12)Combining (9) and (12) with Lemma 8, we immediately obtainE  b(k + 1)y0
k + 1 ! < E  d(k + 1)y0ek + 1 ! :Moreover, (12) yieldsE  bky0
k + 1! > E  b(k + 1)y0
k + 1 ! = E  bky0
+ 1k + 1 ! :Hen
e by de�nition, a(1)(k + 1) = 2 and2A(1)(k + 1) = 2A(1)(k) + 1 = bky0
 + 1 = b(k + 1)y0
:Thus the statement follows for k + 1 also in this 
ase.Observe that as 0 < y0 < 1=2, the above two 
ases 
over all the possibilities.Thus the sequen
e A(1) minimizesE(y). This implies that TEA(1)(k) is minimalfor every k 2 N , and the theorem follows. 2Remark 10 We have A(1) = (2; 1; 1; 1; 2; 1; 2; 1; 1; 2; 1; 1; : : :). For the k-thtotal and relative errors of A(1) we obtainTEA(1)(k) = k2(2� � + 2E(y))and REA(1)(k) = 2� � + 2E(y)� ;where y = 2A(1)(k)=k, and E(y) is de�ned in Lemma 8. By limk!1 y = 2p6�35 wegetREA(1) = 2� �� + 2�  2 ar

os 3 + 8p625 !+ 4p6� 115 ! = 0:046525347 : : :Figure 4 illustrates how H(A(1)k ) approximates Gk for k = 2; 5; 7; 9; 12. Thedark regions show the error of the approximation.Clearly, d(A(1)) is not a metri
 on Z2. Another unpleasant feature of A(1) isthat it is not easy to generate: to obtain its k-th element, we have to 
al
ulatethe �rst k�1 elements previously. Now we give two sequen
es whi
h are easy to
onstru
t, and for every k 2 N , one of them is also the "best" to approximateGk. 14



Fig. 4. Approximating Gk by H(A(1)k ) for k = 2, 5, 7, 9, 12.Corollary 11 For j = 1; 2 and i 2 N put
(j)(i) = 8><>: j; if i = 1,bi2p6�35 
 � b(i� 1)2p6�35 
+ 1; if i > 1,and write C(1) = (
(1)(i))1i=1 and C(2) = (
(2)(i))1i=1. Then for every B 2 S2and k 2 N, minfTEC(1)(k); TEC(2)(k)g � TEB(k):PROOF. Observe that for every k 2 N , 2C(1)(k) = bky0
 and 2C(2)(k) =dky0e, where y0 = 2p6�35 . Hen
e A(1)k = C(1)k or C(2)k , and the statement followsfrom Theorem 9. 2Remark 12 As 2C(1)(k) = bky0
 for every k 2 N, by Lemma 2, d(C(1))is a metri
 on Z2. Thus in a sense d(C(1)) 
an be 
onsidered to be the bestmetri
 (
oming from a neighbourhood sequen
e) to approximate the Eu
lideandistan
e on Z2. Note that REC(1) = REA(1).5 Comparing approximation resultsIn this se
tion we 
ompare our results with those of Das in [3℄, and Mukherjeeet al. in [11℄. Das [3℄ used an error fun
tion whi
h measures the average di�er-en
e between the Eu
lidean distan
e and the "simple metri
 value" generatedby a neighbourhood sequen
e. He 
on
luded that the periodi
 neighbourhoodsequen
e S = (1; 1; 2; 1; 2), whi
h generates a "simple metri
", should be used15



to approximate L2. Note that for every k 2 N, H(Sk) 6� Gk. The authors in[11℄ in their approximation pro
edure, 
onsidered area, perimeter and shapeerrors at the same time, and restri
ted their investigations to relatively shortsequen
es. For their purposes the use of (1; 1; 2) was suÆ
ient. We proposeto use the sequen
e C(1) de�ned in Corollary 11 to approximate L2. Clearly,as S is a "re�nement" of (1; 1; 2), its approximating properties (in our senseof approximation) are better as well. Thus we 
ompare S and C(1) here, andomit the error data of (1; 1; 2).Sin
e we used a di�erent error fun
tion than Das in [3℄, we 
hoose a thirdone to 
ompare our results. We examine how the k-disks Ak approximate thek-disks Gk in the digital sense. That is, we 
ount the k-th dis
rete total errorDTEA(k) = jAk 5Okj;being the number of grid points in the symmetri
 di�eren
e of Ak and Ok,where A 2 S2, k 2 N . The k-th dis
rete relative error of the approximation isde�ned as DREA(k) = DTEA(k)jOkj :The following table shows the dis
rete relative errors of the neighbourhoodsequen
es S = (1; 1; 2; 1; 2) given in [3℄ and C(1) given in Corollary 11, bothproviding metri
s on Z2.Table 1Dis
rete relative errors of distan
e fun
tions generated by S and C(1).DRE(k)k S = (1; 1; 2; 1; 2) C(1) = �bi2p6�35 
 � b(i� 1)2p6�35 
+ 1�1i=110 0:12618297::: 0:11356467:::50 0:06322498::: 0:05863607:::100 0:05551135::: 0:05169176:::200 0:05218540::: 0:04909694:::500 0:05023499::: 0:04755593:::1000 0:04955390::: 0:04704176:::From Table 1 we 
an see that C(1) behaves better also in this "digital" sense.16
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