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most essential tasks is to give a onvenient digital metri, whih approximatesthe Eulidean metri L2 on Z2 well.In [13℄ Rosenfeld and Pfaltz introdued the digital metris d4 and d8 in Z2,based on ityblok and hessboard motions, respetively. Cityblok motionallows movements only in horizontal and vertial diretions, while hessboardmotion in diagonal ones, as well. The distane of two points is the numberof steps required to reah either point from the other. To obtain a betterapproximation of L2, Rosenfeld and Pfaltz reommended the alternate use ofityblok and hessboard motions, whih de�nes the dot distane.By allowing arbitrary periodi mixture of these motions, Das et al. [4℄ in-trodued the onept of periodi neighbourhood sequenes. In [8℄ Fazekas etal. de�ned the notion of general (not neessarily periodi) neighbourhood se-quenes. The main advantage of these sequenes over the lassial motionsis that they provide more exibility in moving on the plane. Making use ofthis property, Das [3℄ and Mukherjee et al. [11℄ determined distane funtionsthat provide good approximations of the Eulidean distane in a ertain sense.However, in these papers only periodi neighbourhood sequenes were used.In this paper we perform an approximation of the 2D Eulidean distane bydistane funtions d(A) based on general (non-periodi) neighbourhood se-quenes A. In ontrast with results obtained using periodi sequenes (see e.g.[1,3,6,11℄ and the referenes given there), in this way we an give the atuallybest approximating sequene, instead of a �nite part of it. This allows us toformulate more preise statements, and obtain better results. In fat we dis-tinguish two types of approximation. On one hand, we investigate the generalsituation, i.e. the problem of �nding a digital metri d(A) whih approximatesL2 best. On the other hand, we onsider the problem of approximating L2from below, separately. In the latter ase the problem is to �nd the digitalmetri d(A) minorating L2 on Z2, whih approximates L2 best.To measure the error of approximation, we ompare the disks of radii k withk 2 N of L2, and of the distane funtions d(A). A similar but slightly di�erenterror funtion was used by Das and Chatterji [6℄, and Mukherjee et al. [11℄for periodi neighbourhood sequenes. Interestingly, the best approximatingsequenes we obtain are (mostly) Beatty sequenes, thus they an be on-struted very easily. For eah type of approximation under onsideration wegive neighbourhood sequenes suh that the orresponding distane funtionsare metris on Z2. Thus we get good approximation of the Eulidean distaneby digital metris. In partiular, we determine the digital metri d(A), bestapproximating L2 from below "uniformly", i.e. independently of the sense ofapproximation (see Problem 3 and Theorem 6).The struture of the paper is as follows. In the seond setion we introdue our2



notation. In the third setion we formulate three problems, whih summarizeour aims in a preise form. In the fourth setion we solve these problems, bygiving the best approximating neighbourhood sequenes. In the last setionwe ompare the sequenes obtained with those reommended by Das in [3℄,and Mukherjee et al. in [11℄. As we use a di�erent method to measure theerror of the approximation than the authors in [3℄ and [11℄, we hoose a thirdtype of error funtion to this purpose.2 Basi onepts and notationFirst we reall some de�nitions and notation from [4℄ and [8℄.Let q be a point in Z2. The i-th oordinate of q is denoted by Pri(q) (i =1; 2). Let M 2 f0; 1; 2g. The points q; r 2 Z2 are alled M -neighbours, if thefollowing two onditions hold:� jPri(q)� Pri(r)j � 1 (i = 1; 2),� jPr1(q)� Pr1(r)j+ jPr2(q)� Pr2(r)j �M .The sequene A = (a(i))1i=1, where a(i) 2 f1; 2g for all i 2 N , is alled a 2-dimensional (shortly 2D) neighbourhood sequene. If for some l 2 N , a(i+l) =a(i) (i 2 N), then A is periodi with period l. In this ase we briey writeA = (a(1); a(2); : : : ; a(l)). The set of the 2D-neighbourhood sequenes will bedenoted by S2.Let q; r 2 Z2 and A 2 S2. The point sequene q = q0; q1; : : : ; qm = r, whereqi�1 and qi are a(i)-neighbours in Z2 (1 � i � m), is alled an A-path oflength m from q to r. The A-distane d(q; r;A) of q and r is de�ned as thelength of the shortest A-path(s) between them. We shortly write d(A) forthe distane funtion generated by the neighbourhood sequene A. In generald(A) is not a metri on Z2, however, by a theorem of Nagy [12℄ we an hekthis property. Nagy's result desribes the general nD ase, but we formulate itonly for 2D. Note that this assertion was proved by Das et al. [4℄ for periodineighbourhood sequenes.Theorem 1 (see [12℄) Let A 2 S2. Then d(A) is a metri on Z2 if and onlyif for any s; t 2 N sXi=1 a(i) � s+t�1Xi=t a(i):Let q; r 2 Z2. As usual, the Lp (p > 0) distane of q and r is de�ned byLp(q; r) = (jPr1(q)� Pr1(r)jp + jPr2(q)� Pr2(r)jp) 1p ;3



and L1(q; r) = maxfjPr1(q)� Pr1(r)j; jPr2(q)� Pr2(r)jg:We have Lp1 � Lp2 for every q; r 2 Z2, provided that p1 � p2.Obviously,L1(q; r) = d4(q; r) = d(q; r; (1)) and L1(q; r) = d8(q; r) = d(q; r; (2)):The onstant periodi neighbourhood sequenes (1) and (2), respetively,spread in the slowest and fastest way in Z2 among the 2D-neighbourhoodsequenes. So for every A 2 S2 we have L1(q; r) � d(q; r;A) � L1(q; r). It isa natural problem to �nd the neighbourhood sequenes, whose distane fun-tions approximates the 2D Eulidean distane L2 best in some sense. On theother hand, as we already mentioned in the introdution, suh sequenes haveimportant pratial appliations as well. To handle this problem, we omparethe regions oupied by a sequene A 2 S2 with the Eulidean disks. As theneighbourhood sequenes spread in Z2 in a translation invariant way, we mayhoose the origin 0 2 Z2 as the starting point. For illustration, Figure 1 showsthat the metri dot (generated by (1; 2)) is "loser" to L2, than d4 or d8.
Fig. 1. The regions oupied by the neighbourhood sequenes (1), (2) and (1; 2)after two steps.Let A 2 S2. For every k 2 N , letAk = fq 2 Z2 : d(0; q;A) � kgdenote the region oupied by A after k steps, and write H(Ak) for the on-vex hull of Ak in R2 . Observe that H(Ak) in general is an otagon whih issymmetri to the oordinate axes and to the lines y = x and y = �x in the[x; y℄ plane. Let Ok = fq 2 Z2 : L2(0; q) � kgand Gk = fq 2 R2 : L2(0; q) � kgbe the disks of radius k in Z2 and R2 , respetively. The sets Ak and Ok willbe alled the k-disks of the distanes d(A) and L2, respetively.4



We will often use the number of 1 and 2 values ourring among the �rst kelements of a neighbourhood sequene A. So for every k 2 N put1A(k) = jfa(i) : a(i) = 1; 1 � i � kgjand 2A(k) = jfa(i) : a(i) = 2; 1 � i � kgj;where A = (a(i))1i=1. For onveniene, write 1A(0) = 2A(0) = 0. Note that1A(k) + 2A(k) = k (k 2 N).For any x 2 R, let bx denote the largest integer whih is less than or equal tox, and dxe the smallest integer whih is greater than or equal to x. Let � 2 Rwith 0 � � � 1, and let A = (a(i))1i=1, B = (b(i))1i=1 be sequenes of 1-s and2-s, de�ned bya(i) = bi� � b(i� 1)�+ 1; b(i) = di�e � d(i� 1)�e+ 1 (i 2 N):The sequenes A;B are alled Beatty sequenes on the letters 1, 2. Clearly,for every k 2 N we have2A(k) = bk� and 2B(k) = dk�e:Conversely, these equalities de�ne Beatty sequenes whih are uniquely deter-mined. We refer to [9℄ for the basi properties of Beatty sequenes and theirgeneralizations.3 Three approximation problemsTo deide how a digital distane d(A) approximates the Eulidean distaneL2 on Z2, we ompare the k-disks Ak and Ok. A natural approah ould beto hoose the number of integer points in the symmetri di�erene Ak 5 Okas an error funtion. However, there is no exat formula for the number ofinteger points inside Ok. So we follow a slightly di�erent method whih is avariant of that used in [6℄ and [11℄. Namely, we ompare the sets H(Ak) andGk, and hoose A to minimize the area of H(Ak)5 Gk. Of ourse, it an bedone only separately for eah k. However, surprisingly it turns out that forevery k 2 N the very same A an be hosen to minimize this area. So thisneighbourhood sequene A an be regarded as the one that approximates L2best (in the above sense).Aording to the these priniples, we investigate the funtionTEA(k) = Area(H(Ak)5Gk);5



alled the total error of the approximation at the k-th step. We also use therelative error at the k-th step, de�ned asREA(k) = TEA(k)k2� ;and the limit relative error (if it exists)REA = limk!1REA(k):We note that the authors in [6℄ and [11℄, instead of measuring the area of thesymmetri di�erene H(Ak)5Gk, simply took the di�erene jArea(H(Ak))�Area(Gk)j as an error funtion. Clearly, our approah is more sensitive to the"mathing" of H(Ak) and Gk. It also should be mentioned that in [6℄ and[11℄ additional error funtions, suh as perimeter error and shape error wereonsidered, as well.We perform several types of approximation. Our aims an be summarized inthe following problems. The �rst problem onerns the general ase.Problem 1. Find a neighbourhood sequene A(1) 2 S2 (if exists) suh that forevery B 2 S2 and k 2 NArea(H(A(1)k )5Gk) � Area(H(Bk)5Gk):We onsider separately the ase when the otagons H(Ak) over Gk for everyk 2 N , that is the orresponding funtion d(A) minorates L2.Problem 2. Find a neighbourhood sequene A(2) 2 S2 (if exists) suh thatH(A(2)k ) � Gk for every k 2 N, and for every B 2 S2, H(Bk) � Gk impliesthat Area(H(A(2)k ) nGk) � Area(H(Bk) nGk):Note that it does not make sense to onsider a problem with H(Ak) � Gk.Indeed, observe thatH(Ak) is ontained inGk if and only if the �rst k elementsof A are all 1-s. This is the reason why we do not take up the problem ofmajorating L2 by digital metris d(A).Figure 2 illustrates Problems 1 and 2.We will onstrut two neighbourhood sequenes, satisfying the requirementsof Problems 1 and 2, respetively. Moreover, we will give a sequene suh that6



(a) (b)Fig. 2. The error of approximation (a) in the general ase (b) when H(Ak) � Gk.the orresponding distane funtion is a metri, and it an be onsidered asthe digital metri whih approximates L2 best in the sense of Problem 1.We also investigate the following "disrete" version of Problem 2. Note thatProblem 1 does not have a similar variant.Problem 3. Find a neighbourhood sequene A(3) 2 S2 (if exists) suh thatA(3)k � Ok for every k 2 N, and if B 2 S2 with Bk � Ok, then Bk � A(3)k .Observe that the sequene A(3) has the nie property that the orrespondingdistane funtion d �A(3)� is "uniformly" the best one to approximate L2 frombelow. That is, for any B 2 S2, ifd(q; r;B) � L2(q; r) for any q; r 2 Z2; thend(q; r;B) � d �q; r;A(3)� for any q; r 2 Z2:In Theorem 6 we will solve Problem 3, by onstruting the sequene A(3)having the desired property. Interestingly, it will turn out that the distanefuntion d(A(3)) is a metri on Z2. To show this, the following lemma will beuseful.Lemma 2 Let � 2 R with 0 � � � 1, and let A 2 S2 be the unique sequenewith 2A(k) = bk� for every k 2 N . Then d(A) is a metri.PROOF. Suppose to the ontrary that d(A) is not a metri. Then usingTheorem 1, for some n;N 2 N with n < NnXi=1 a(i) > NXi=N�n+1 a(i) (1)7



holds. Clearly, we may suppose that N � n+ 1 > n. We rewrite (1) as2A(n) > 2A(N)� 2A(N � n): (2)As all the numbers in (2) are integers, we obtain2A(N � n) � 2A(N) + 1� 2A(n): (3)Observe that by the de�nition of A, for every k 2 N we have2A(k) � k� < 2A(k) + 1: (4)Combining (3) and (4), we get(N � n)� � 2A(N � n) � 2A(N) + 1� 2A(n) > N� � n�whih is a ontradition. Hene the lemma follows. 24 The solution of the approximation problemsIn this setion we onstrut "extremal" sequenes desribed in Problems 1, 2and 3. We start with Problem 2, as it is the simplest to handle.4.1 Approximating L2 from belowIn this subsetion we onsider only neighbourhood sequenes A with H(Ak) �Gk for all k 2 N . As we have already mentioned, it means that the orrespond-ing distane funtion d(A) minorates L2. The next result gives a solution toProblem 2.Theorem 3 Let A(2) = (a(2)(i))1i=1 be the unique 2D-neighbourhood sequenede�ned by 2A(2)(k) = dk(p2� 1)e (k 2 N), that isa(2)(i) = di(p2� 1)e � d(i� 1)(p2� 1)e+ 1 (i 2 N):Then H(A(2)k ) � Gk for any k 2 N, and B 2 S2, H(Bk) � Gk implies thatArea(H(A(2)k ) nGk) � Area(H(Bk) nGk):8



PROOF. Let k be a �xed positive integer, and let B 2 S2 be arbitrarysuh that H(Bk) ontains Gk. Clearly, the verties of H(Bk) with positiveoordinates are (k; 2B(k)) and (2B(k); k). Hene H(Bk) � Gk implies thatthe line x + y = k + 2B(k) has at most one point in ommon with the irlex2+y2 = k2 in the [x; y℄-plane. A simple alulation gives that it is equivalentto (k � 2B(k))2 � 2 (2B(k))2 � 0; (5)that is 2B(k)=k � p2� 1.One an easily hek (see also [1,6,11℄) that Area(H(Bk)) = 4k2�2(k�2B(k))2,whene the total error of the approximation isTEB(k) = 4k2 � 2(k � 2B(k))2 � �k2: (6)Clearly, TEB(k) is minimal, when 2B(k) is minimal. Taking into onsiderationthat 2B(k)=k � p2� 1 and 2B(k) is an integer, we obtain that TEB(k) takesits minimum when 2B(k) = dk(p2� 1)e. Hene the theorem follows. 2Figure 3 shows how the otagons H(A(2)k ) of the neighbourhood sequene A(2)de�ned in Theorem 3 approximate Gk for k = 2; 5; 7; 9; 12. The dark regionsshow the error of the approximation.

Fig. 3. Approximating Gk by H(A(2)k ) for k = 2; 5; 7; 9; 12.Remark 4 The otagonsH(A(2)k ) are almost regular. (For regularity we shouldhave 2A(k) = k(p2� 1), whih is impossible.) Obviously, the ratio of the in-lined and horizontal (or vertial) sides of H(A(2)k ) tends to 1 as k ! 1. Itwas already noted by Rosenfeld and Pfaltz [13℄ that the "best approximating"sequene should have suh property. A detailed study in this diretion with pe-9



riodi sequenes under slightly di�erent irumstanes was performed by Dasand Chatterji [6℄.Remark 5 For the k-th total error of the approximation of L2 with d(A(2))we get TEA(2)(k) = (4� �)k2 � 2 (k � 2A(2)(k))2 :Thus for the k-th relative error and for the relative error we obtainREA(2)(k) = 4� �� � 2�  1� 2A(2)(k)k !2and REA(2) = 8(p2� 1)� �� = 0:054786175:::By the following theorem we solve Problem 3.Theorem 6 Let A(3) 2 S2, A(3) = (a(3)(i))1i=1 be the unique sequene de�nedby 2A(3)(k) = bk(p2� 1) (k 2 N), that isa(3)(i) = bi(p2� 1) � b(i� 1)(p2� 1)+ 1 (i 2 N):Then for every k 2 N, Ok � A(3)k . Moreover, if B 2 S2 suh that Ok � Bk forsome k 2 N, then A(3)k � Bk.PROOF. Let k 2 N be �xed, and suppose that Ok 6� A(3)k . Let A(2) be theneighbourhood sequene de�ned in Theorem 3. Then, as A(2)k � Ok, thereexists an integer point q of Ok, whih is also in A(2)k n A(3)k . Sine 2A(2)(k) =2A(3)(k) + 1, q must be on the border of A(2)k .Moreover, by H(A(2)k ) � Gk, the only possibility is that q is the tangent pointof Gk and one of the inlined sides of H(A(2)k ). Using symmetry, this impliesthat q belongs to one of the lines y = x or y = �x. However, the points beingboth on the perimeter of Gk and on one of these lines, do not have integeroordinates. This ontradition shows that Ok � A(3)k for every k 2 N .To prove the seond statement, we show that for any k 2 N , every inlinedside of A(3)k ontains an integer point from Ok. To this purpose, observe thatas 2A(3)(k)=k < p2� 1, we have(k � 2A(3)(k))2 � 2 (2A(3)(k))2 > 0: (7)Comparing (7) with formula (5), we get that every inlined side of H(A(3)k ) hastwo points in ommon with the perimeter of Gk. A simple alulation yields10



that the intersetion points with positive oordinates are k + 2A(3)(k) +Q2 ; k + 2A(3)(k)�Q2 !and  k + 2A(3)(k)�Q2 ; k + 2A(3)(k) +Q2 ! ;where Q = q(k � 2A(3)(k))2 � 2(2A(3)(k))2:For the distane D of these points we obtainD = q2[(k � 2A(3)(k))2 � 2(2A(3)(k))2℄:As k and 2A(3)(k) are integers, by (7) we infer that(k � 2A(3)(k))2 � 2 (2A(3)(k))2 � 1whih yields D � p2. As the line ontaining the above intersetion points isgiven by x + y = k + 2A(3)(k) on the [x; y℄ plane, D � p2 implies that thereis at least one integer point on the orresponding inlined side of H(A(3)k ),whih also belongs to Gk. This shows that if B 2 S2 with Bk � Ok, then2B(k) � 2A(3)(k) must be valid. Thus Bk � A(3)k , and the theorem follows. 2Remark 7 By Lemma 2, d(A(3)) is a metri on Z2. That is, among the digitalmetris orresponding to neighbourhood sequenes, d(A(3)) is the best one toapproximate L2 from below in Z2. More preisely, the following two propertieshold:� for all x; y 2 Z2 we have d(x; y;A(3)) � L2(x; y),� if d(A) is any metri orresponding to some A 2 S2 andd(x; y;A) � L2(x; y) for all x; y 2 Z2;then d(x; y;A) � d(x; y;A(3)) for all x; y 2 Z2:4.2 The general aseIn this subsetion we solve Problem 1. For this purpose the following lemmawill be useful. 11



Lemma 8 De�ne the funtion E : [0; 1℄! R byE(y) = 8>>>>><>>>>>: 2y � y2; if y � p2� 1,2 aros(y(y + 2))�2(y + 1)p1� 2y � y2 � y2 + 2y; otherwise.Then E(y) has a global minimum at y0 = 2p6�35 . Moreover, E(y) is stritlymonotone dereasing in [0; y0℄ and stritly monotone inreasing in [y0; 1℄.PROOF. Observe that E(y) is ontinuous on [0; 1℄. Taking the derivative ofE on the intervals [0;p2�1℄ and [p2�1; 1℄ separately, by a simple alulationthe lemma follows from elementary alulus. 2Theorem 9 Let the neighbourhood sequene A(1) = (a(1)(i))1i=1 be de�ned bya(1)(i) = 8><>: 1; if E �2A(1)(i�1)i � < E �2A(1) (i�1)+1i �,2; otherwise,where E is introdued in the previous lemma. Then for any B 2 S2 and k 2 N ,Area(H(A(1)k )5Gk) � Area(H(Bk)5Gk):PROOF. Let k be a �xed positive integer and B 2 S2. Using (6) when theinlined sides of H(Bk) do not interset Gk, and by a simple alulation in theopposite ase, we obtain that the k-th total error of the approximation of L2by B isTEB(k) = 8>>>>><>>>>>: 2k2 � �k2 + 2k2(2y � y2); if y � p2� 1,2k2 � �k2 + 2k2(2 aros(y(y + 2))�2(y + 1)p1� 2y � y2 � y2 + 2y); otherwise,where y = 2B(k)=k.Clearly, TEB(k) is minimal if and only if E(y) is minimal for B. By Lemma 8mint2Z0�t�k E � tk� = min(E  bky0k ! ; E  dky0ek !) ; (8)where y0 = 2p6�35 . 12



We prove that for every k 2 N , 2A(1)(k) = bky0 or dky0e aording to whetherE  bky0k ! < E  dky0ek ! ;or not. By (8) this will imply that E(y) is minimal for A(1), whene TEA(1)(k) �TEB(k) for every B 2 S2 and k 2 N .We proeed by indution on k. For k = 1 the statement is obvious: a(1)(1) = 2and E(1) < E(0). Suppose that for some k we have 2A(1)(k) = bky0; the asewhen 2A(1)(k) = dky0e is similar. Then, by the indution hypothesis,E  bky0k ! < E  dky0ek ! = E  bky0 + 1k ! : (9)We distinguish two ases.(i) Assume �rst that bky0 = b(k + 1)y0 < d(k + 1)y0e = dky0e.Now if E  bky0k + 1! < E  bky0+ 1k + 1 ! ; (10)then by de�nition a(1)(k + 1) = 1, whene2A(1)(k + 1) = 2A(1)(k) = bky0 = b(k + 1)y0:Sine we an write (10) asE  b(k + 1)y0k + 1 ! < E  d(k + 1)y0ek + 1 ! ;the statement is also true for k + 1. On the other hand, ifE  bky0k + 1! � E  bky0+ 1k + 1 ! ; (11)then we obtain a(1)(k + 1) = 2. By 2A(1)(k) = bky0, this yields2A(1)(k + 1) = 2A(1)(k) + 1 = dky0e = d(k + 1)y0e:Now the statement for k + 1 follows from rewriting (11) asE  d(k + 1)y0ek + 1 ! � E  b(k + 1)y0k + 1 ! :(ii) Assume now that bky0 < dky0e = b(k + 1)y0 < d(k + 1)y0e.13



In this ase we havebky0k + 1 < bky0k < b(k + 1)y0k + 1 < y0 < dky0ek � d(k + 1)y0ek + 1 : (12)Combining (9) and (12) with Lemma 8, we immediately obtainE  b(k + 1)y0k + 1 ! < E  d(k + 1)y0ek + 1 ! :Moreover, (12) yieldsE  bky0k + 1! > E  b(k + 1)y0k + 1 ! = E  bky0+ 1k + 1 ! :Hene by de�nition, a(1)(k + 1) = 2 and2A(1)(k + 1) = 2A(1)(k) + 1 = bky0 + 1 = b(k + 1)y0:Thus the statement follows for k + 1 also in this ase.Observe that as 0 < y0 < 1=2, the above two ases over all the possibilities.Thus the sequene A(1) minimizesE(y). This implies that TEA(1)(k) is minimalfor every k 2 N , and the theorem follows. 2Remark 10 We have A(1) = (2; 1; 1; 1; 2; 1; 2; 1; 1; 2; 1; 1; : : :). For the k-thtotal and relative errors of A(1) we obtainTEA(1)(k) = k2(2� � + 2E(y))and REA(1)(k) = 2� � + 2E(y)� ;where y = 2A(1)(k)=k, and E(y) is de�ned in Lemma 8. By limk!1 y = 2p6�35 wegetREA(1) = 2� �� + 2�  2 aros 3 + 8p625 !+ 4p6� 115 ! = 0:046525347 : : :Figure 4 illustrates how H(A(1)k ) approximates Gk for k = 2; 5; 7; 9; 12. Thedark regions show the error of the approximation.Clearly, d(A(1)) is not a metri on Z2. Another unpleasant feature of A(1) isthat it is not easy to generate: to obtain its k-th element, we have to alulatethe �rst k�1 elements previously. Now we give two sequenes whih are easy toonstrut, and for every k 2 N , one of them is also the "best" to approximateGk. 14



Fig. 4. Approximating Gk by H(A(1)k ) for k = 2, 5, 7, 9, 12.Corollary 11 For j = 1; 2 and i 2 N put(j)(i) = 8><>: j; if i = 1,bi2p6�35  � b(i� 1)2p6�35 + 1; if i > 1,and write C(1) = ((1)(i))1i=1 and C(2) = ((2)(i))1i=1. Then for every B 2 S2and k 2 N, minfTEC(1)(k); TEC(2)(k)g � TEB(k):PROOF. Observe that for every k 2 N , 2C(1)(k) = bky0 and 2C(2)(k) =dky0e, where y0 = 2p6�35 . Hene A(1)k = C(1)k or C(2)k , and the statement followsfrom Theorem 9. 2Remark 12 As 2C(1)(k) = bky0 for every k 2 N, by Lemma 2, d(C(1))is a metri on Z2. Thus in a sense d(C(1)) an be onsidered to be the bestmetri (oming from a neighbourhood sequene) to approximate the Eulideandistane on Z2. Note that REC(1) = REA(1).5 Comparing approximation resultsIn this setion we ompare our results with those of Das in [3℄, and Mukherjeeet al. in [11℄. Das [3℄ used an error funtion whih measures the average di�er-ene between the Eulidean distane and the "simple metri value" generatedby a neighbourhood sequene. He onluded that the periodi neighbourhoodsequene S = (1; 1; 2; 1; 2), whih generates a "simple metri", should be used15



to approximate L2. Note that for every k 2 N, H(Sk) 6� Gk. The authors in[11℄ in their approximation proedure, onsidered area, perimeter and shapeerrors at the same time, and restrited their investigations to relatively shortsequenes. For their purposes the use of (1; 1; 2) was suÆient. We proposeto use the sequene C(1) de�ned in Corollary 11 to approximate L2. Clearly,as S is a "re�nement" of (1; 1; 2), its approximating properties (in our senseof approximation) are better as well. Thus we ompare S and C(1) here, andomit the error data of (1; 1; 2).Sine we used a di�erent error funtion than Das in [3℄, we hoose a thirdone to ompare our results. We examine how the k-disks Ak approximate thek-disks Gk in the digital sense. That is, we ount the k-th disrete total errorDTEA(k) = jAk 5Okj;being the number of grid points in the symmetri di�erene of Ak and Ok,where A 2 S2, k 2 N . The k-th disrete relative error of the approximation isde�ned as DREA(k) = DTEA(k)jOkj :The following table shows the disrete relative errors of the neighbourhoodsequenes S = (1; 1; 2; 1; 2) given in [3℄ and C(1) given in Corollary 11, bothproviding metris on Z2.Table 1Disrete relative errors of distane funtions generated by S and C(1).DRE(k)k S = (1; 1; 2; 1; 2) C(1) = �bi2p6�35  � b(i� 1)2p6�35 + 1�1i=110 0:12618297::: 0:11356467:::50 0:06322498::: 0:05863607:::100 0:05551135::: 0:05169176:::200 0:05218540::: 0:04909694:::500 0:05023499::: 0:04755593:::1000 0:04955390::: 0:04704176:::From Table 1 we an see that C(1) behaves better also in this "digital" sense.16



Referenes[1℄ Aswatha Kumar, M., Mukherjee, J., Chatterji, B.N., Das, P.P.: A geometriapproah to obtain best otagonal distanes, Ninth Sandinavian Conf. ImageProess., 1995, pp. 491-498.[2℄ Danielsson, P.E.: 3D otagonal metris, Eighth Sandinavian Conf. ImageProess., 1993, pp. 727-736.[3℄ Das, P.P.: Best simple otagonal distanes in digital geometry, J. Approx. Theory68 (1992), 155-174.[4℄ Das, P.P., Chakrabarti P.P. and Chatterji B.N.: Distane funtions in digitalgeometry, Inform. Si. 42 (1987), 113-136.[5℄ Das, P.P., Chakrabarti P.P. and Chatterji B.N.: Generalised distanes in digitalgeometry, Inform. Si. 42 (1987), 51-67.[6℄ Das, P.P. and Chatterji B.N.: Otagonal distanes for digital pitures, Inform.Si. 50 (1990), 123-150.[7℄ Das, P.P., Mukherjee J. and Chatterji B.N.: The t-ost distane in digitalgeometry, Inform. Si. 59 (1992), 1-20.[8℄ Fazekas, A., Hajdu, A. and Hajdu, L.: Lattie of generalized neighbourhoodsequenes in nD and 1D, Publ. Math. Debreen 60 (2002), 405-427.[9℄ Lothaire, M.: Combinatoris on words. Addison-Wesley Publishing Co., Reading,Mass., 1983, xix+238 pp.[10℄ Melter, R.A.: A survey on digital metris, Contemporary Mathematis 119(1991), 95-106.[11℄ Mukherjee, J., Das, P.P., Aswatha Kumar, M. and Chatterji, B.N.: Onapproximating Eulidean metris by digital distanes in 2D and 3D, PatternReognition Lett. 21 (2000), 573-582.[12℄ Nagy, B.: Distane funtions based on generalised neighbourhood sequenes in�nite and in�nite dimensional spaes, In: 5th International Conferene on AppliedInformatis (Editors: E. Kov�as and Z. Winkler), Eger, Hungary, 2001, pp. 183-190.[13℄ Rosenfeld, A. and Pfaltz, J.L.: Distane funtions on digital pitures, PatternReognition 1 (1968), 33-61.[14℄ Yamashita, M. and Ibaraki, T.: Distanes de�ned by neighbourhood sequenes,Pattern Reognition 19 (1986), 237-246.
17


