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Abstract

In this paper we discuss some possibilities of approximating the Euclidean distance
in Z2 by the help of digital metrics induced by neighbourhood sequences. Contrary
to the earlier approaches, we use general (non-periodic) neighbourhood sequences
which allows us to derive more precise results. We determine those metrics which
can be regarded as the best approximations to the Euclidean distance in some sense.
We compare our results with earlier studies of Das [3] and Mukherjee et al. [11].
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1 Introduction

In 2-dimensional digital applications it is often very useful to have an ap-
propriate (digital) distance function on Z?2. Thus the investigation of digital
distance functions and metrics becomes more and more important. See e.g. the
survey paper [10] of Melter for an account, and the papers [2,3,5-7,12,14] and
the references given there for earlier results and the present state. One of the
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most essential tasks is to give a convenient digital metric, which approximates
the Euclidean metric Ly on Z? well.

In [13] Rosenfeld and Pfaltz introduced the digital metrics d; and dg in Z?,
based on cityblock and chessboard motions, respectively. Cityblock motion
allows movements only in horizontal and vertical directions, while chessboard
motion in diagonal ones, as well. The distance of two points is the number
of steps required to reach either point from the other. To obtain a better
approximation of Lo, Rosenfeld and Pfaltz recommended the alternate use of
cityblock and chessboard motions, which defines the d,. distance.

By allowing arbitrary periodic mixture of these motions, Das et al. [4] in-
troduced the concept of periodic neighbourhood sequences. In [8] Fazekas et
al. defined the notion of general (not necessarily periodic) neighbourhood se-
quences. The main advantage of these sequences over the classical motions
is that they provide more flexibility in moving on the plane. Making use of
this property, Das [3] and Mukherjee et al. [11] determined distance functions
that provide good approximations of the Euclidean distance in a certain sense.
However, in these papers only periodic neighbourhood sequences were used.

In this paper we perform an approximation of the 2D Euclidean distance by
distance functions d(A) based on general (non-periodic) neighbourhood se-
quences A. In contrast with results obtained using periodic sequences (see e.g.
[1,3,6,11] and the references given there), in this way we can give the actually
best approximating sequence, instead of a finite part of it. This allows us to
formulate more precise statements, and obtain better results. In fact we dis-
tinguish two types of approximation. On one hand, we investigate the general
situation, i.e. the problem of finding a digital metric d(A) which approximates
Ly best. On the other hand, we consider the problem of approximating L,
from below, separately. In the latter case the problem is to find the digital
metric d(A) minorating Ly on Z?, which approximates Ly best.

To measure the error of approximation, we compare the disks of radii £ with
k € Nof Ly, and of the distance functions d(A). A similar but slightly different
error function was used by Das and Chatterji [6], and Mukherjee et al. [11]
for periodic neighbourhood sequences. Interestingly, the best approximating
sequences we obtain are (mostly) Beatty sequences, thus they can be con-
structed very easily. For each type of approximation under consideration we
give neighbourhood sequences such that the corresponding distance functions
are metrics on Z?. Thus we get good approximation of the Euclidean distance
by digital metrics. In particular, we determine the digital metric d(A), best
approximating Lo from below ”uniformly”, i.e. independently of the sense of
approximation (see Problem 3 and Theorem 6).

The structure of the paper is as follows. In the second section we introduce our



notation. In the third section we formulate three problems, which summarize
our aims in a precise form. In the fourth section we solve these problems, by
giving the best approximating neighbourhood sequences. In the last section
we compare the sequences obtained with those recommended by Das in [3],
and Mukherjee et al. in [11]. As we use a different method to measure the
error of the approximation than the authors in [3] and [11], we choose a third
type of error function to this purpose.

2 Basic concepts and notation

First we recall some definitions and notation from [4] and [8].

Let ¢ be a point in Z2 The i-th coordinate of ¢ is denoted by Pr;(q) (i =
1,2). Let M € {0,1,2}. The points ¢,r € Z? are called M-neighbours, if the
following two conditions hold:

e |Pri(q) —Pri(r)| <1 (i=1,2),
e |Pri(q) — Pri(r)| + | Pra(q) — Pra(r) < M.

The sequence A = (a(i))2,, where a(i) € {1,2} for all i € N, is called a 2-
dimensional (shortly 2D) neighbourhood sequence. If for some [ € N, a(i+1) =
a(i) (i € N), then A is periodic with period [. In this case we briefly write
A= (a(l),a(2),...,a(l)). The set of the 2D-neighbourhood sequences will be
denoted by Ss.

Let ¢, € Z? and A € S,. The point sequence ¢ = qo, q1,...,¢n = 7, Where
¢i—1 and g; are a(i)-neighbours in Z? (1 < i < m), is called an A-path of
length m from ¢ to r. The A-distance d(q,r; A) of ¢ and r is defined as the
length of the shortest A-path(s) between them. We shortly write d(A) for
the distance function generated by the neighbourhood sequence A. In general
d(A) is not a metric on Z?2, however, by a theorem of Nagy [12] we can check
this property. Nagy’s result describes the general nD case, but we formulate it
only for 2D. Note that this assertion was proved by Das et al. [4] for periodic
neighbourhood sequences.

Theorem 1 (see [12]) Let A € Sy. Then d(A) is a metric on Z?* if and only
iof for any s,t € N

Let ¢, € Z*. As usual, the L, (p > 0) distance of ¢ and r is defined by

Ly(q,7) = (| Pri(q) — Pry(r)]” + | Pra(q) — Pra(r)") 7,



and
Leo(gq, ) = max{| Pri(¢q) — Pri(r)[, [Pra(q) — Pra(r)[}.
We have L, < L,, for every ¢,r € Z?, provided that p; > ps.

Obviously,

Li(q,7) = da(g,7) = d(g,7; (1)) and Lu(q,7) = ds(q,7) = d(q,7;(2)).

The constant periodic neighbourhood sequences (1) and (2), respectively,
spread in the slowest and fastest way in Z? among the 2D-neighbourhood
sequences. So for every A € Sy we have Li(q,r) < d(q,7; A) < Leo(q, 7). It is
a natural problem to find the neighbourhood sequences, whose distance func-
tions approximates the 2D Euclidean distance Ly best in some sense. On the
other hand, as we already mentioned in the introduction, such sequences have
important practical applications as well. To handle this problem, we compare
the regions occupied by a sequence A € Sy with the Euclidean disks. As the
neighbourhood sequences spread in Z? in a translation invariant way, we may
choose the origin 0 € Z? as the starting point. For illustration, Figure 1 shows
that the metric d,. (generated by (1,2)) is "closer” to Ly, than dy or ds.

Fig. 1. The regions occupied by the neighbourhood sequences (1), (2) and (1,2)
after two steps.

Let A € S,. For every k € N, let
Ay ={q €2 : d(0,q; A) <k}

denote the region occupied by A after k steps, and write H(Ay) for the con-
vex hull of A in R?. Observe that H(Ax) in general is an octagon which is
symmetric to the coordinate axes and to the lines y = x and y = —z in the
[z, y] plane. Let

Or=1{qeZ?: Ly0,q) <k}
and

Gr={q€R? : Ly(0,q) <k}

be the disks of radius k in Z? and R2, respectively. The sets A; and Oy will
be called the k-disks of the distances d(A) and Lo, respectively.



We will often use the number of 1 and 2 values occurring among the first &
elements of a neighbourhood sequence A. So for every k € N put

14(k) = [{a(@) : a(i) =1, 1 <i < k)|

and
24(k) = [{a(i) : a(t) =2, 1 <i <k},

where A = (a(i))$2,. For convenience, write 1,(0) = 2,4(0) = 0. Note that
1a(k) + 24(k) = k (k € N).

For any = € R, let |x| denote the largest integer which is less than or equal to
x, and [z] the smallest integer which is greater than or equal to x. Let « € R
with 0 < a < 1, and let A = (a(7))2,, B = (b(7))2, be sequences of 1-s and
2-s, defined by

a(i) = lia] — [(i — Do) +1, b(i) = [ia] — [ —1)a] +1 (i € N).

The sequences A, B are called Beatty sequences on the letters 1, 2. Clearly,
for every k£ € N we have

24(k) = |ka| and 2g(k) = [ka].

Conversely, these equalities define Beatty sequences which are uniquely deter-
mined. We refer to [9] for the basic properties of Beatty sequences and their
generalizations.

3 Three approximation problems

To decide how a digital distance d(A) approximates the Euclidean distance
Ly on Z?, we compare the k-disks Ay and Op. A natural approach could be
to choose the number of integer points in the symmetric difference Ay 7 Oy
as an error function. However, there is no exact formula for the number of
integer points inside Of. So we follow a slightly different method which is a
variant of that used in [6] and [11]. Namely, we compare the sets H(Ay) and
Gy, and choose A to minimize the area of H(Ay) v Gg. Of course, it can be
done only separately for each k. However, surprisingly it turns out that for
every k € N the very same A can be chosen to minimize this area. So this
neighbourhood sequence A can be regarded as the one that approximates Ly
best (in the above sense).

According to the these principles, we investigate the function

TE (k) = Area(H (Ag) v Gi),



called the total error of the approximation at the k-th step. We also use the
relative error at the k-th step, defined as

and the limit relative error (if it exists)

RE, = lim RE(k).

We note that the authors in [6] and [11], instead of measuring the area of the
symmetric difference H(Ay) 7 Gy, simply took the difference |Area(H (Ay)) —
Area(Gy)| as an error function. Clearly, our approach is more sensitive to the
"matching” of H(Ay) and Gj. It also should be mentioned that in [6] and
[11] additional error functions, such as perimeter error and shape error were
considered, as well.

We perform several types of approximation. Our aims can be summarized in
the following problems. The first problem concerns the general case.

Problem 1. Find a neighbourhood sequence A" € Sy (if exists) such that for
every B € Sy and k € N

Area(H(AM) 7 Gy,) < Area(H(By) v Gy).

We consider separately the case when the octagons H(Ay) cover Gy for every
k € N, that is the corresponding function d(A) minorates L.

Problem 2. Find a neighbourhood sequence A € S, (if exists) such that
H(Agf)) D Gy for every k € N, and for every B € Sy, H(By) 2 Gy implies
that

Area(H(AP)\ Gi) < Area(H(By) \ Gy).

Note that it does not make sense to consider a problem with H(Ag) C Gy.
Indeed, observe that H(Ay) is contained in Gy if and only if the first & elements
of A are all 1-s. This is the reason why we do not take up the problem of
majorating Ly by digital metrics d(A).

Figure 2 illustrates Problems 1 and 2.

We will construct two neighbourhood sequences, satisfying the requirements
of Problems 1 and 2, respectively. Moreover, we will give a sequence such that



(a) (b)
Fig. 2. The error of approximation (a) in the general case (b) when H(Ay) 2 Gy.

the corresponding distance function is a metric, and it can be considered as
the digital metric which approximates L, best in the sense of Problem 1.

We also investigate the following ”discrete” version of Problem 2. Note that
Problem 1 does not have a similar variant.

Problem 3. Find a neighbourhood sequence A® € S, (if exists) such that
A,(f) D Oy for every k € N, and if B € Sy with By O Oy, then By D A,(c?’).

Observe that the sequence A® has the nice property that the corresponding
distance function d (A(3)) is "uniformly” the best one to approximate Ly from
below. That is, for any B € Ss, if

d(q,7; B) < Ly(q,r) for any q,r € Z?, then

d(q,r; B) <d (q, T A(3)) for any ¢,r € Z>.

In Theorem 6 we will solve Problem 3, by constructing the sequence A®)
having the desired property. Interestingly, it will turn out that the distance
function d(A®) is a metric on Z2. To show this, the following lemma will be
useful.

Lemma 2 Let o € R with 0 < a <1, and let A € Sy be the unique sequence
with 24(k) = |ka] for every k € N. Then d(A) is a metric.

PROOF. Suppose to the contrary that d(A) is not a metric. Then using
Theorem 1, for some n, N € N with n < N

n N

a(i)> > a(i) (1)

1 i=N-n+1

1



holds. Clearly, we may suppose that N —n + 1 > n. We rewrite (1) as

24(n) > 24(N) — 24(N —n). (2)

As all the numbers in (2) are integers, we obtain

2A(N—n)22A(N)+1—2A(n) (3)

Observe that by the definition of A, for every k € N we have

2.4(k) < ka < 2.4(k) + 1. (4)

Combining (3) and (4), we get
(N—=n)a>24(N—n)>24(N)+1—-24(n) > Na—n«a

which is a contradiction. Hence the lemma follows. O

4 The solution of the approximation problems

In this section we construct ”extremal” sequences described in Problems 1, 2
and 3. We start with Problem 2, as it is the simplest to handle.

4.1 Approximating Ly from below

In this subsection we consider only neighbourhood sequences A with H(A;) D
Gy, for all K € N. As we have already mentioned, it means that the correspond-
ing distance function d(A) minorates Ly. The next result gives a solution to
Problem 2.

Theorem 3 Let A®? = (a?(i))2, be the unique 2D-neighbourhood sequence
defined by 2,4 (k) = [k(v2 —1)] (k € N), that is

a6 =[i(vV2-1)]-[G-1D2-1)]+1 (ieN).
Then H(A,(f)) D Gy forany k € N, and B € Sy, H(Bg) 2 Gy, implies that

Area(H (AP)\ Gy) < Area(H (By) \ Gy).



PROOF. Let k£ be a fixed positive integer, and let B € S, be arbitrary
such that H(By) contains Gy. Clearly, the vertices of H(By) with positive
coordinates are (k,2p(k)) and (2p(k), k). Hence H(By) O G}, implies that
the line x + y = k + 2p5(k) has at most one point in common with the circle
22 +9y? = k? in the [z, y]-plane. A simple calculation gives that it is equivalent
to

(k—2p(k)" —2(25(k))* <0, (5)

that is 2p(k)/k > V2 — 1.

One can easily check (see also [1,6,11]) that Area(H (By)) = 4k*—2(k—2p(k))?,
whence the total error of the approximation is

TEg(k) = 4k* — 2(k — 2(k))? — 7k>. (6)

Clearly, T Ep(k) is minimal, when 25 (k) is minimal. Taking into consideration
that 25(k)/k > /2 — 1 and 2p(k) is an integer, we obtain that TEg(k) takes
its minimum when 25 (k) = [k(v/2 — 1)]. Hence the theorem follows. O

Figure 3 shows how the octagons H(A,?)) of the neighbourhood sequence A(?)

defined in Theorem 3 approximate Gy for k = 2,5,7,9,12. The dark regions
show the error of the approximation.

LTI
<k
[T T

Fig. 3. Approximating Gy, by H(A?) for k = 2,5,7,9,12.

Remark 4 The octagons H(Af)) are almost reqular. (For reqularity we should
have 24(k) = k(v/2 — 1), which is impossible.) Obviously, the ratio of the in-
clined and horizontal (or vertical) sides of H(A,(CQ)) tends to 1 as k — oco. It
was already noted by Rosenfeld and Pfaltz [13] that the ”best approzimating”
sequence should have such property. A detailed study in this direction with pe-



riodic sequences under slightly different circumstances was performed by Das

and Chatterji [6].

Remark 5 For the k-th total error of the approzimation of Lo with d(A®)
we get
TEA(Q)(k) = (4 - 7T)k2 -2 (k - 2A(2)(k))2 .

Thus for the k-th relative error and for the relative error we obtain

4—7T 2 2A(2)(k) 2
By (k) = L
RE o (F) T 7r< k
and /3
8(v2 — 1) —
RE o = ( ) T 0.054786175..
T

By the following theorem we solve Problem 3.

Theorem 6 Let A®) € Sy, A® = (a®)(4))2, be the unique sequene defined
by 24 (k) = |k(v2—1)] (k €N), that is

a®()=[i(V2-1)] - [(i-1)(V2-1)]+1 (ieN).

Then for every k € N, Oy C Agf). Moreover, if B € Sy such that Oy C By, for
some k € N, then A;f) C B;.

PROOF. Let k € N be fixed, and suppose that O, € A,(f’). Let A® be the
neighbourhood sequence defined in Theorem 3. Then, as A,(f) D Oy, there
exists an integer point ¢ of O, which is also in A,(f) \A,(f’). Since 24 (k) =
2,4 (k) + 1, ¢ must be on the border of A,(f).

Moreover, by H(Agf)) D Gy, the only possibility is that ¢ is the tangent point
of Gy, and one of the inclined sides of H(A,(f)). Using symmetry, this implies
that ¢ belongs to one of the lines y = x or y = —z. However, the points being
both on the perimeter of Gy and on one of these lines, do not have integer
coordinates. This contradiction shows that O, C AS’) for every k € N,

To prove the second statement, we show that for any k£ € N, every inclined
side of A,(f’) contains an integer point from Oy. To this purpose, observe that
as 2,4 (k)/k < /2 — 1, we have

(k=240 (k)" = 2 (24 (k)" > 0. (7)

Comparing (7) with formula (5), we get that every inclined side of H(A;f)) has
two points in common with the perimeter of Gy. A simple calculation yields

10



that the intersection points with positive coordinates are

(k +2,40 (k) +Q k+ 2,0 (k) - Q)
2 ’ 2

and

(k + 240 (k) —Q k+2,40(k) + Q)
2 ’ 2 ’

where

Q = \/(k — 240 (k)2 — 2(240 (k))2.

For the distance D of these points we obtain

D = /2[(k — 240 ())? — 2240 (K))?]
As k and 2 ) (k) are integers, by (7) we infer that

(k=240 (k)" =2 (240 (k)" > 1

which yields D > /2. As the line containing the above intersection points is
given by z +y = k + 2, (k) on the [z,y] plane, D > /2 implies that there
is at least one integer point on the corresponding inclined side of H(A;f)),
which also belongs to Gj. This shows that if B € Sy with By 2 Oy, then
2p5(k) > 24 (k) must be valid. Thus By 2 Agf), and the theorem follows. O

Remark 7 By Lemma 2, d(A®)) is a metric on Z?. That is, among the digital
metrics corresponding to neighbourhood sequences, d(A(3)) 18 the best one to
approzimate Ly from below in Z2. More precisely, the following two properties

hold:

e for all z,y € 72 we have d(x,y; A®)) < Ly(z,y),

e if d(A) is any metric corresponding to some A € Sy and
d(w,y; A) < La(z,y) for all z,y € 27,

then
d(z,y: A) < d(z,y; AB)) for all z,y e Z2

4.2 The general case

In this subsection we solve Problem 1. For this purpose the following lemma

will be useful.

11



Lemma 8 Define the function E :[0,1] — R by

Qy_y2; Zf ZJZ\/?—L
E(y) = { 2arccos(y(y + 2))—

2(y + 1)v1 =2y — y% — y* + 2y, otherwise.

Then E(y) has a global minimum at yo = Lg_? Moreover, E(y) is strictly

monotone decreasing in [0, yo] and strictly monotone increasing in [yo, 1].

PROOF. Observe that E(y) is continuous on [0, 1]. Taking the derivative of
F on the intervals [0, v/2—1] and [v/2—1, 1] separately, by a simple calculation
the lemma follows from elementary calculus. O

Theorem 9 Let the neighbourhood sequence A1) = (a") (i), be defined by

‘ 2,1y (i-1) 2, (1) (i—1)+1
1,if E <L) <F <A7>
a(l)(z) — { % i

2, otherwise,

where E is introduced in the previous lemma. Then for any B € Sy and k € N,

Area(H(AM) 7 Gy,) < Area(H(By) v Gy).

PROOF. Let k be a fixed positive integer and B € S,. Using (6) when the
inclined sides of H(By) do not intersect Gy, and by a simple calculation in the
opposite case, we obtain that the k-th total error of the approximation of L,
by B is
2k% — k? + 2k (2y — y?), if y>+v2-1,
TEg(k) = q 2k? — wk? + 2k?(2 arccos(y(y + 2))—

2(y + 1)v/1 = 2y — y2 — y? + 2y), otherwise,
where y = 25(k)/k.
Clearly, TEg(k) is minimal if and only if F(y) is minimal for B. By Lemma 8

o e ()mfo (2 ().

0<t<k

2v/6—3
-

where yy =

12



We prove that for every k € N, 2 ,0)(k) = |kyo] or [kyo| according to whether

L~y (ko
E <FE
( k ko)
or not. By (8) this will imply that F(y) is minimal for A", whence TE 4, (k) <
TEg(k) for every B € Sy and k € N.

We proceed by induction on k. For k = 1 the statement is obvious: a" (1) = 2
and E(1) < E(0). Suppose that for some k we have 2 ,4)(k) = |kyo|; the case
when 2 ,u)(k) = [kyo] is similar. Then, by the induction hypothesis,

E(LkiOJ> <E<Miﬂ> :E<%> (9)

We distinguish two cases.

(i) Assume first that [kyo| = [(k + Dyo] < [(k+ 1)yo| = [kyo].

E (ka°J> <E (M> , (10)

E+1 kE+1
then by definition a") (k + 1) = 1, whence

Now if

240k +1) =240 (k) = [kyo] = [(k+ Dyol.

Since we can write (10) as

(Wt n) g (10 u)

kE+1 kE+1

the statement is also true for £ + 1. On the other hand, if

then we obtain a("(k + 1) = 2. By 2,4 (k) = |kyo], this yields
240 (k+1) = 240 (k) + 1 = [kyo] = [(k + 1)yol.
Now the statement for k£ + 1 follows from rewriting (11) as
g (1E+Dul) 5 (L4 Dol
k+1 k+1

(1) Assume now that |kyo] < [kyo| = [(k+ L)yo| < [(k+ 1)yo]-

13



In this case we have

Lkyol  [kyol  L(k+1)yo] [kyol _ [(k+ Dol
Frl S kS k1 W< ST 1@

Combining (9) and (12) with Lemma 8, we immediately obtain

E(L(Hl)yoJ) <E((<k+1>yow>_

E+1 E+1

Moreover, (12) yields

() () o (2242,

Hence by definition, a(" (k + 1) = 2 and

2,0k+1)=2,40(k)+1=|kyo| +1=[(k+ 1)yo]-
Thus the statement follows for k + 1 also in this case.

Observe that as 0 < yg < 1/2, the above two cases cover all the possibilities.
Thus the sequence A minimizes E(y). This implies that T E o) (k) is minimal
for every k£ € N, and the theorem follows. O

Remark 10 We have AV = (2,1,1,1,2,1,2,1,1,2,1,1,...). For the k-th
total and relative errors of A" we obtain

TE, (k) = k*(2 — 7 + 2E(y))

and 5 2E(y)
-7+
RE o1 (k) = ~,

™

2v6—
5

w

where y = 2,0, (k)/k, and E(y) is defined in Lemma 8. By lergloy = we

get

2 — 2 3+ 8v6 44/6 — 11
RE o) = T <2arccos< + \/_>—|— \/_5

T 25

) = 0.046525347 . ..

Figure 4 illustrates how H(Ag)) approximates Gy for k = 2,5,7,9,12. The
dark regions show the error of the approximation.

Clearly, d(A™")) is not a metric on Z2?. Another unpleasant feature of A() is
that it is not easy to generate: to obtain its k-th element, we have to calculate
the first £k—1 elements previously. Now we give two sequences which are easy to
construct, and for every k£ € N, one of them is also the "best” to approximate
Gk.

14



Fig. 4. Approximating Gy, by H(A") for k=2, 5, 7,9, 12,
Corollary 11 For j =1,2 and i1 € N put

Js if =1,

R R R D= A N

and write O = (cW (1)), and C? = (2 (i))2,. Then for every B € S,
and k € N,
min {TFEqcq) (k), TEqo2 (k)} < TEg(k).

PROOF. Observe that for every k € N, 2,0 (k) = |kyo| and 240 (k) =

[kyo], where yo = 2‘[%. Hence A,(;) = C’,EU or CIEQ), and the statement follows
from Theorem 9. O

Remark 12 As 2.0 (k) = |kyo| for every k € N, by Lemma 2, d(CV)
is a metric on Z?. Thus in a sense d(CV) can be considered to be the best

metric (coming from a neighbourhood sequence) to approzimate the Euclidean
distance on Z?. Note that REoq) = RE 4.

5 Comparing approximation results

In this section we compare our results with those of Das in [3], and Mukherjee
et al. in [11]. Das [3] used an error function which measures the average differ-
ence between the Euclidean distance and the ”simple metric value” generated
by a neighbourhood sequence. He concluded that the periodic neighbourhood
sequence S = (1,1,2,1,2), which generates a ”simple metric”, should be used

15



to approximate Ly. Note that for every k € N, H(Sy) 2 Gi. The authors in
[11] in their approximation procedure, considered area, perimeter and shape
errors at the same time, and restricted their investigations to relatively short
sequences. For their purposes the use of (1,1,2) was sufficient. We propose
to use the sequence C'") defined in Corollary 11 to approximate L,. Clearly,
as S is a "refinement” of (1,1,2), its approximating properties (in our sense
of approximation) are better as well. Thus we compare S and C") here, and
omit the error data of (1,1, 2).

Since we used a different error function than Das in [3], we choose a third
one to compare our results. We examine how the k-disks A, approximate the
k-disks G, in the digital sense. That is, we count the k-th discrete total error

being the number of grid points in the symmetric difference of Ay and Oy,
where A € S5, k € N. The k-th discrete relative error of the approximation is
defined as

DTE4(k
DRE(k) = o o:|( )

The following table shows the discrete relative errors of the neighbourhood
sequences S = (1,1,2,1,2) given in [3] and C") given in Corollary 11, both
providing metrics on Z2.

Table 1
Discrete relative errors of distance functions generated by S and C(1).
DRE(k)
B S=(1,1,2,12) | 00 = ([i282) - |- )2E2) +1)
10 0.12618297... 0.11356467...
50 0.06322498... 0.05863607...
100 0.05551135... 0.05169176...
200 0.05218540... 0.04909694...
500 0.05023499... 0.04755593...
1000 0.04955390... 0.04704176...

From Table 1 we can see that C(!) behaves better also in this ”digital” sense.
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