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Abstract. We show that if k is a positive integer, then there
are, under certain technical hypotheses, only finitely many coprime
positive k-term arithmetic progressions whose product is a perfect
power. If 4 ≤ k ≤ 11, we obtain the more precise conclusion that
there are, in fact, no such progressions. Our proofs exploit the
modularity of Galois representations corresponding to certain Frey
curves, together with a variety of results, classical and modern, on
solvability of ternary Diophantine equations. As a straightforward
corollary of our work, we sharpen and generalize a theorem of
Sander on rational points on superelliptic curves.

1. Introduction

A celebrated theorem of Erdős and Selfridge [14] states that the
product of consecutive positive integers is never a perfect power. A
more recent and equally appealing result is one of Darmon and Merel
[11] who proved an old conjecture of Dénes to the effect that there
do not exist three consecutive nth powers in arithmetic progression,
provided n ≥ 3. One common generalization of these problems is to
ask whether it is possible to have a product of consecutive terms in
arithmetic progression equal to a perfect power. In general, the answer
to this question is yes, as the Diophantine equation

(1) n(n + d) · · · (n + (k − 1)d) = yl, k ≥ 3, l ≥ 2

may have infinitely many solutions in positive integers n, d, k, y and l
if either the integers n and d have suitable common factors (as in the
example 9 · 18 · 27 · 36 = 543), or (k, l) = (3, 2) and gcd(n, d) = 1 (e.g.
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1 · 25 · 49 = 352). If, however, we restrict our attention to progressions
with

(2) gcd(n, d) = 1, k ≥ 3, l ≥ 2, (k, l) 6= (3, 2),

a number of special finiteness results are available in the literature.
Euler (see e.g. [13]) showed that then (1) has no solutions if (k, l) =
(3, 3) or (4, 2); a similar statement was obtained by Obláth [26], [27] for
the cases (k, l) = (3, 4), (3, 5) or (5, 2). It has been conjectured by Erdős
(as noted in [37]; see also Darmon and Granville [10]) that (1) (with
(2)) has, in fact, no solutions whatsoever. This conjecture has been
recently established by Győry [18] for k = 3 (and l ≥ 3 arbitrary) and
by Győry, Hajdu and Saradha [19], in case k = 4 or 5. Unfortunately,
the arguments of [19] are invalid if l = 3; we correct these in Section 5
of the paper at hand.

In general, however, it appears to be a very hard problem to prove
even that the number of solutions to (1), with (2), is finite. As a rough
indication of its depth, this does not seem to be a consequence of the
ABC Conjecture of Masser and Oesterlé, unless we further assume
that l ≥ 4; see Theorem 7 of [19]. Further work in this direction,
under restrictive hypotheses, includes that of Marszalek [23] (in case
d is fixed), Shorey and Tijdeman [37] (if l and the number of prime
divisors of d is fixed) and Darmon and Granville [10] (if both k and
l are fixed). For a broader sample of the abundant literature in this
area, the reader may wish to consult the survey articles of Tijdeman
[42] and Shorey [35], [36].

In this paper, we will address the problem of establishing finiteness
results for equation (1), under the sole assumption that k is fixed. One
of the principal results of this paper is an extension of the aforemen-
tioned work of Győry [18] and Győry, Hajdu and Saradha [19] to k ≤ 11
(with a requisite correction of the latter work, in case l = 3).

Theorem 1.1. The product of k consecutive terms in a coprime pos-
itive arithmetic progression with 4 ≤ k ≤ 11 can never be a perfect
power.

By coprime progression, we mean one of the form

n, n + d, · · · , n + (k − 1)d

with gcd(n, d) = 1. We should emphasize that this does not follow as a
mere computational sharpening of the approach utilized in [18] or [19],
but instead necessitates the introduction of fundamentally new ideas.
Indeed, the principal novelty of this paper is the combination of a new
approach for solving ternary Diophantine equations under additional
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arithmetic assumptions, via Frey curves and modular Galois represen-
tations, with classical (and not so classical!) results on lower degree
equations representing curves of small (positive) genus. Further, for the
most part, our results do not follow from straightforward application
of the modularity of Galois representations attached to Frey curves,
but instead require additional understanding of the reduction types of
these curves at certain small primes.

Theorem 1.1 is, in fact, an immediate consequence of a more general
result. Before we state this, let us introduce some notation. Define,
for integer m with |m| > 1, P (m) and ω(m) to be the largest prime
dividing m and the number of distinct prime divisors of m, respectively
(where we take P (±1) = 1, ω(±1) = 0). Further, let us write

(3) Π (i1, i2, . . . , it) = (n + i1d)(n + i2d) · · · (n + itd)

and

(4) Πk = Π(0, 1, 2, . . . , k − 1) = n(n + d)(n + 2d) · · · (n + (k − 1)d).

With these definitions, we have the following theorem.

Theorem 1.2. Suppose that k and l are integers with 3 ≤ k ≤ 11,
l ≥ 2 prime and (k, l) 6= (3, 2), and that n and d are coprime integers
with d > 0. If, further, b and y are nonzero integers with P (b) ≤ Pk,l

where Pk,l is as follows :

k l = 2 l = 3 l = 5 l ≥ 7
3 − 2 2 2
4 2 3 2 2
5 3 3 3 2
6 5 5 5 2
7 5 5 5 3
8 5 5 5 3
9 5 5 5 3
10 5 5 5 3
11 5 5 5 5

then the only solutions to the Diophantine equation

(5) Π = Πk = byl

are with (n, d, k) in the following list :

(−9, 2, 9), (−9, 2, 10), (−9, 5, 4), (−7, 2, 8), (−7, 2, 9), (−6, 1, 6), (−6, 5, 4),

(−5, 2, 6), (−4, 1, 4), (−4, 3, 3), (−3, 2, 4), (−2, 3, 3), (1, 1, 4), (1, 1, 6).
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For k = 3, this theorem was proved in [18]. Our Theorem 1.2 sharp-
ens and generalizes the corresponding results of [19], which treated the
cases k = 4 and 5 (with l 6= 3). Note that the upper bound on P (b) in
the above theorem may be replaced in all cases by the slightly stronger
but simpler bound

(6) P (b) < max{3, k/2},

leading to a cleaner but weaker theorem. Further, in cases (k, l) = (4, 2)
and (3, 3), the result is best possible (in the sense that Pk,l cannot be
replaced by a larger value). This is almost certainly not true for other
values of (k, l).

It is a routine matter to extend Theorem 1.2 to arbitrary (i.e. not
necessarily prime) values of l. For (k, l) = (3, 4), equation (5) has no
solutions with (6), cf. Theorem 8 of [19]. For all other pairs (k, l) under
consideration, Theorem 1.2 yields the following result.

Corollary 1.3. Suppose that n, d and k are as in Theorem 1.2, and
that l ≥ 2 is an integer with (k, l) 6= (3, 2). If, further, b and y are
nonzero integers with (6), then the only solutions to equation (5) are
with (n, d, k) in the following list :

(−9, 2, 9), (−9, 2, 10), (−9, 5, 4), (−7, 2, 8), (−7, 2, 9),

(−6, 5, 4), (−5, 2, 6), (−4, 3, 3), (−3, 2, 4), (−2, 3, 3).

Note that knowing the values of the unknowns on the left hand side
of (5), one can easily determine all the solutions (n, d, k, b, y, l) to (5).

In the special case d = 1, the set of solutions of equation (5), for k ≥ 2
fixed, has been described in [17], [20] and [31], under less restrictive
assumptions upon b. For further partial results on (5), we refer again
to the survey papers [18], [35] [36] and [42].

For fixed values of k ≥ 3 and l ≥ 2 with k + l > 6, equation (5)
has at most finitely many solutions in positive integers (n, d, b, y) with
gcd(n, d) = 1 and P (b) ≤ k; see Theorem 6 of [19].

If we turn our attention to k > 11, we may prove a number of results
of a similar flavour to Theorem 1.2, only with a corresponding loss of
precision. If k is slightly larger than 11, we have the following theorem.

Theorem 1.4. If 12 ≤ k ≤ 82, then there are at most finitely many
nonzero integers n, d, l, b and y with gcd(n, d) = 1, l ≥ 2 and satisfying
(5), with P (b) < k/2. Moreover, for all such solutions to (5), we have

log P (l) < 3k.
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For arbitrary values of k, we may deduce finiteness results for equa-
tions (1) and (5), only under certain arithmetic assumptions. Write

(7) Dk =
∏

k/2≤p<k

p

where the product is over prime p.

Theorem 1.5. If k ≥ 4 is fixed, then the Diophantine equation (5) has
at most finitely many solutions in positive integers n, d, b, y and l with

gcd(n, d) = 1, y > 1, l > 1, P (b) < k/2 and d 6≡ 0 (mod Dk).

For each such solution, we necessarily have log P (l) < 3k.

A corollary of this which yields a finiteness result for (1), provided k
is suitably large (relative to the number of prime divisors of d), is the
following.

Corollary 1.6. Let D be a positive integer and suppose that k is a
fixed integer satisfying

(8) k ≥
{

4 if D ∈ {1, 2}
6D log D if D ≥ 3.

Then the Diophantine equation (5) has at most finitely many solutions
in positive integers n, d, b, y and l with

gcd(n, d) = 1, y > 1, l > 1, ω(d) ≤ D, and P (b) < k/2.

We remark that a sharp version of this result, in the special case
l = 2 and b = D = 1, was recently obtained by Saradha and Shorey
[33].

Finally, we mention an application of Theorem 1.2 to a family of
superelliptic equations first studied by Sander [30]. Specifically, let us
consider equations of the form

(9) x(x + 1) . . . (x + k − 1) = ±2αzl

where x and z are rational numbers with z ≥ 0, and k, l and α are
integers with k, l ≥ 2 and −l < α < l. If −l < α < 0, by replacing α
and z in (9) with l + α and z/2, respectively, we may restrict ourselves
to the case where α is nonnegative.

If x and z are further assumed to be integers and α = 0, then, by
the result of Erdős and Selfridge [14], we have that the only solutions
to (9) are with z = 0. Since these are also solutions of (9) for each
α, we will henceforth refer to them as trivial; in what follows, we shall
consider only non-trivial solutions. Let us return to the more general
situation when x, z ∈ Q. By putting x = n/d and z = y/u with



6 M. A. BENNETT, N. BRUIN, K. GYŐRY, AND L. HAJDU

integers n, d, y, u such that gcd(n, d) = gcd(y, u) = 1, d > 0, y ≥ 0
and u > 0, we see that (9) reduces to equation (5) with P (b) ≤ 2
and (by comparing denominators) satisfying the additional constraint
that ul = 2γdk for some nonnegative integer γ. An almost immediate
consequence of Theorem 1.2 is the following.

Corollary 1.7. Let 2 ≤ k ≤ 11 and l ≥ 2 with (k, l) 6= (2, 2) (and, if
α > 0, (k, l) 6= (2, 4)). Then the only non-trivial solutions of (9) with
0 ≤ α < l are those (x, k) in the following list :

(−9/2, 9), (−9/2, 10), (−7/2, 8), (−7/2, 9), (−5/2, 6), (−2, 2),

(−3/2, 4), (−4/3, 3), (−2/3, 3), (−1/2, 2), (1, 2).

This result follows easily from Theorem 1.2; the reader is directed
to [19] for the necessary arguments. Indeed, in [19], our Corollary 1.7
is established for l ≥ 4, k = 3, 4 and, if α = 0, k = 5. If 2 ≤ k ≤ 4,
l > 2 and α = 0, Sander [30] completely solved equation (9) and noted
that, for (k, l) = (2, 2), there are, in fact, infinitely many solutions. We
remark, however, that the solutions listed in Corollary 1.7 for k = 3
and 4 are missing from Sander’s result. Further, as discussed in [19],
the assumption (k, l) 6= (2, 4) (if α > 0) is necessary, since, in that case,
equation (9) has, again, infinitely many solutions.

The structure of this paper is as follows. In the second section, we
will indicate how the problem of solving equation (5) may be trans-
lated to a question of determining solutions to ternary Diophantine
equations. In Sections 3–6, we prove Theorem 1.2 for, respectively,
prime l ≥ 7, l = 2, l = 3 and l = 5. In many cases, for l = 2 or 3, the
problem may be reduced to one of finding the torsion points on certain
rank 0 elliptic curves E/Q. In a number of situations, however, this
approach proves inadequate to deduce the desired result. We instead
turn to recent explicit Chabauty techniques due to Bruin and Flynn
[5]; we encounter some interesting variations between the cases with
l = 2 and those with l = 3. If l = 5, we depend on either classical
results of Dirichlet, Lebesgue, Maillet (cf. [13]), Dénes [12] and Győry
[16] on generalized Fermat equations of the shape X l + Y l = CZ l, or
recent work of Kraus [21]. For l ≥ 7, we apply recent results of the first
author and Chris Skinner [1], together with some refinements of these
techniques; our proofs are based upon Frey curves and the theory of
Galois representations and modular forms. Section 7 is devoted to the
proof of Theorem 1.5. Finally, we conclude the paper by considering
values of k with 12 ≤ k ≤ 82.



POWERS FROM TERMS IN ARITHMETIC PROGRESSION 7

2. The transition to ternary equations

For virtually every argument in this paper, we will rely heavily on
the fact that a “nontrivial” solution to (5) implies a number of similar
solutions to related ternary Diophantine equations which we may, if all
goes well, be able to treat with the various tools at our disposal. The
only situation where we will not follow this approach is in Section 4
(i.e. when l = 2). From equation (5) and the fact that gcd(n, d) = 1,
we may write

(10) n + id = biy
l
i for 0 ≤ i ≤ k − 1,

where bi and yi are integers with P (bi) < k. We note that, in terms
of bi, such a representation is not necessarily unique. We will thus
assume, unless otherwise stated, that each bi is lth power free and, if l
is odd, positive.

Let us first observe that any three of the linear forms n + id, 0 ≤
i ≤ k− 1, are linearly dependent. In particular, given distinct integers
0 ≤ q, r, s ≤ k − 1, we may find relatively prime non-zero integers λq,
λr, λs, for which

(11) λq(n + qd) + λr(n + rd) = λs(n + sd).

It follows from (10) that, writing A = λqbq, B = λrbr, C = λsbs,
(u, v, z) = (yq, yr, ys), we have

(12) Aul + Bvl = Czl,

where it is straightforward to show that P (ABC) < k. This is a
ternary Diophantine equation of signature (l, l, l). In case l = 3, 5 and,
sometimes, l ≥ 7, we will prove Theorem 1.2 through analysis of such
equations. In the sequel, we will employ the shorthand [q, r, s] to refer
to an identity of the form (11) (and hence a corresponding equation
(12)) – for given distinct integers q, r and s, coprime nonzero integers
λq, λr and λs satisfying (11) are unique up to sign.

A second approach to deriving ternary equations from a solution to
(5) proves to be particularly useful for larger values of (prime) l. If
p, q, r and s are integers with

0 ≤ p < q ≤ r < s ≤ k − 1 and p + s = q + r,

then we may observe that

(13) (n + qd)(n + rd)− (n + pd)(n + sd) = (qr − ps)d2 6= 0.

It follows that identity (13) implies (nontrivial) solutions to Diophan-
tine equations of the form

(14) Aul + Bvl = Cz2
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with P (AB) < k, for each quadruple {p, q, r, s}. This is a ternary
Diophantine equation of signature (l, l, 2). Henceforth, we will use the
shorthand {p, q, r, s} to refer to an identity of the form (13).

Our arguments will rely upon the fact that a triple [q, r, s] or quadru-
ple {p, q, r, s} can always be chosen such that the resulting equation
(12) or (14) is one that we may treat with techniques from the theory
of Galois representations and modular forms, or, perhaps, with a more
classical approach. In essence, once we have established certain results
on the equations (12) and (14), as we shall see, this can be regarded as
a purely combinatorial problem.

3. Proof of Theorem 1.2 in case l ≥ 7

We will primarily treat equation (5) with prime exponent l ≥ 7 by
reducing the problem to one of determining the solvability of equations
of the shape (14). For a more detailed discussion of these matters, the
reader is directed to [1], [11], [22] and [25]. We begin by cataloguing
the required results on such ternary equations :

Proposition 3.1. Let l ≥ 7 be prime, α, β be nonnegative integers, and
let A and B be coprime nonzero integers. Then the following Diophan-
tine equations have no solutions in nonzero coprime integers (x, y, z)
with xy 6= ±1 :

xl + 2αyl = 3βz2, α 6= 1(15)

xl + 2αyl = z2 with p | xy for p ∈ {3, 5, 7}(16)

xl + 2αyl = 3z2 with p | xy for p ∈ {5, 7}(17)

xl + yl = Dz2, D ∈ {2, 6}(18)

xl + 3αyl = 2z2 with p | xy for p ∈ {5, 7}, l ≥ 11(19)

xl + 5αyl = 2z2 with l ≥ 11 if α > 0(20)

Axl + Byl = z2, AB = 2αpβ, α ≥ 6, p ∈ {3, 5, 13}(21)

Axl + Byl = z2, AB = 2αpβ, α 6= 1, p ∈ {11, 19}(22)

Axl + Byl = z2, P (AB) ≤ 3, with p | xy for p ∈ {5, 7}(23)

Axl + Byl = z2, P (AB) ≤ 5, with 7 | xy and l ≥ 11.(24)

In each instance where we refer to a prime p, we further suppose that
the exponent l > p.

Proof. We begin by noting that the stated results for equations (15),
(18), (20) and (22) are, essentially, available in Bennett and Skinner
[1]. The cases of equation (21) with p = 3 or 5, and β ≥ 1, while not
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all explicitly treated in [1], follow immediately from the arguments of
that paper, upon noting that the modular curves X0(N) have genus 0
for all N dividing 6 or 10.

For the remaining equations, we will begin by employing the ap-
proach of [1]. Specifically, to a putative nontrivial solution of one of
the preceding equations, we associate a Frey curve E/Q (see [1] for
details), with corresponding mod l Galois representation

ρE
l : Gal(Q/Q) → GL2(Fl)

on the l-torsion E[l] of E. Via Lemmata 3.2 and 3.3 of [1], this rep-
resentation arises from a cuspidal newform f of weight 2 and trivial
Nebentypus character. The level N of this newform may be shown to
satisfy

N ∈ {20, 24, 30, 40, 96, 120, 128, 160, 384, 480, 640, 768, 1152, 1920}
(for example, a nontrivial solution to (16) with α = 1 and x, y odd
necessarily leads to a newform of level 128; for details, the reader is
directed to Lemma 3.2 of [1]). The assumption that p | xy for p ∈
{3, 5, 7} implies, if p is coprime to lN , that

trace ρE
l (Frobp) = ±(p + 1).

It follows, if f has Fourier coefficents an in a number field Kf , that

(25) NormKf /Q (ap ± (p + 1)) ≡ 0 (mod l).

Using William Stein’s “Modular Forms Database” [38], we find ap,
p ∈ {3, 5, 7}, for each newform at the levels N of interest, provided p
is coprime to N . In most cases the corresponding Fourier coefficients
are even integers: from the Weil bounds, a3 ∈ {0,±2} (if 3 - N),
a5 ∈ {0,±2,±4} (if 5 is coprime to N) and a7 ∈ {0,±2,±4} (if 7 fails
to divide N). Congruence (25) thus implies a contradiction for these
forms. The only forms f encountered with Kf 6= Q are (in Stein’s
notation) form 3 at level 160, forms 9–12 at level 640, forms 9–12 at
level 768 and forms 25–28 at level 1920. In the case of form 3, N = 160,
we find that a7 = ±2

√
2 and so 2

√
2 ≡ ±8 (mod P) for some prime P

lying over l. It follows that l | 56 and so l = 7. Similarly, form 9 at level
672 has a7 = −ϑ − 2 where ϑ2 + 2ϑ − 4 = 0. From a7 ≡ ±8 (mod P)
we thus have ϑ ≡ 6 (mod P) (whereby l = 11) or ϑ ≡ −10 (mod P)
(whence l = 19). On the other hand, a3 = ϑ and hence, from the Weil
bounds, ϑ ≡ 0,±2,±4 (mod P), a contradiction in each case. Arguing
in a like fashion for the remaining forms completes the proof. �

We will also need a result on equations of signature (l, l, l). Specifi-
cally, we apply the following.
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Proposition 3.2. Let l ≥ 3 and α ≥ 0 be integers. Then the Diophan-
tine equation

(26) X l + Y l = 2αZ l

has no solutions in coprime nonzero integers X, Y and Z with XY Z 6=
±1.

Proof. This is essentially due to Wiles [43] (in case l | α), Darmon and
Merel [11] (if α ≡ 1 (mod l)) and Ribet [28] (in the remaining cases for
l ≥ 5 prime); see also Győry [18]. �

Let us begin the proof of Theorem 1.2. For the remainder of this
section, we will suppose that there exists a solution to equation (5) in
nonzero integers n, d, k, y, l and b with n and d > 0 coprime, 3 ≤ k ≤
11, and l ≥ 7 prime. We suppose further that b satisfies (6). We treat
each value 3 ≤ k ≤ 11 in turn.

3.1. The case k=3. If k = 3, the identity {0, 1, 1, 2} yields solutions
to an equation of the shape (15) with β = 0 and α = 0 (if Π is odd)
or α ≥ 2 (if Π is even). By Proposition 3.1, after a modicum of work,
we obtain the solutions (n, d, k) = (−4, 3, 3) and (−2, 3, 3) listed in the
statement of Theorem 1.2.

3.2. The case k=4. If n is coprime to 3, we may use the same identity
as for k = 3 to deduce that there is no solution to (5). If 3 | n, then
{0, 1, 2, 3} gives an equation of type (18) with D = 2 (if Π is odd), and
one of the form (16) with p = 3 (if Π is even). In either case, we infer
from Proposition 3.1 that equation (5) has no solution.

3.3. The case k=5. Considering the product of the first or the last
four terms of Π, according as 3 | n, or not, we may reduce this to the
preceding case and reach the desired conclusion.

3.4. The case k=6. If k = 6 and 5 fails to divide n, then we may
apply what we have for the case k = 4 to the product of the first,
middle or last four terms of Π, to obtain that there is no solution
to (5). Similarly, if 3 - n(n + 5d), the middle four terms lead to a
contradiction. Thus we may suppose that 5 | n, and, by symmetry,
that also 3 | n. Considering the identity {0, 1, 4, 5} (if Π is odd) or
{0, 2, 3, 5} (if Π is even), we obtain an equation of the shape (23) with
p = 5. We can thus apply Proposition 3.1 to conclude that (5) has no
solution with k = 6 and l ≥ 7 prime.



POWERS FROM TERMS IN ARITHMETIC PROGRESSION 11

3.5. The case k=7. Next, let k = 7. If 5 - n(n + d), then we may
apply {1, 2, 4, 5} (if 3 | n) or {0, 3, 3, 6} (if 3 - n). These lead to
equations of type (15). Next, suppose that 5 | n(n + d); by symmetry,
we may assume 5 | n. Suppose first that 6 | Π, and consider the identity
{0, 2, 3, 5}. If 3 | n + d, we are led to an equation of the shape (16) or
(17), with p = 5. On the other hand, if 3 | n(n + 2d), then the same
identity induces an equation of the form (23), again with p = 5.

Assume now that 6 - Π, and consider {0, 1, 4, 5}. If gcd(Π, 6) = 3,
this identity gives equation (23) with p = 5. If, however, gcd(Π, 6) = 2,
then the same identity leads either to (16) with p = 5 or to (18), with
D = 2. Finally, if gcd(Π, 6) = 1, then again employing the identity
{0, 1, 4, 5}, we find a solution to (15) with α = β = 0. In all cases, we
conclude from Proposition 3.1 that (5) has no solution, in the situation
under consideration.

3.6. A diversion. In case k ≥ 8, in a number of instances, Proposition
3.1 enables us to prove our statement only for l ≥ 11 prime. We are
thus forced to deal with the exponent l = 7 separately. As we shall
observe, in each case where we encounter difficulties for l = 7, there
are precisely two distinct factors in Π which are divisible by 7. By
our assumptions, we have that 7 | ν7(Π) where, here and henceforth,
we write νp(m) for the largest integer t such that pt divides a nonzero
integer m. It follows that one of these two factors is necessarily divisible
by 72. We will use the following argument to finish the proof in this
case.

Choose three factors n+ qd, n+ rd and n+ sd of Π, such that one of
them, n+qd say, is divisible by 72, but 7 fails to divide (n+rd)(n+sd).
The identity [q, r, s] thus yields

λrbry
7
r ≡ λsbsy

7
s (mod 72),

whence, upon taking sixth powers, it follows that

(27) u6 ≡ v6 (mod 72),

where u = λrbr and v = λsbs. If we choose n + qd, n + rd and n + sd
appropriately, then we can use the fact that, for a ≡ uv−1 (mod 72),

(28) a6 ≡ 1 (mod 72) ⇐⇒ a ≡ ±1,±18,±19 (mod 72)

to obtain a contradiction, thereby verifying that (5) has no solution in
the case in question.

3.7. The case k=8. Let us return to our proof. Suppose k = 8. If
7 - n, then we may reduce to the preceding case by considering the
first or last seven terms of Π. Suppose, then, that 7 | n. Notice that
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if gcd(Π, 15) = 1, then we may apply our results with k = 6 to the
middle six terms of Π to conclude that (5) has no solution. If 5 - Π, it
therefore follows that 3 | Π. If 3 | n or 3 | n + d, using {1, 2, 4, 5} or
{2, 3, 5, 6} respectively, we are led to an equation of the shape (15) with
β = 1, contradicting Proposition 3.1. If 3 | n + 2d, then the identity
{0, 1, 6, 7} gives rise to an equation of the form (18) with D = 6, if Π
is odd, and of the form

(29) xl + 2αyl = 3z2,

if Π is even. We may apply Proposition 3.1 again, unless α = 1, i.e.
unless ν2(n + id) = 2 for one of i = 0, 1, 6, 7. If this last condition
occurs, it follows that ν2(n + jd) ≥ 3 for one of j = 2, 3, 4, 5. For this
j, the identity {j − 1, j, j, j + 1} leads to an equation of the form (21)
with p = 3. By Proposition 3.1, we infer that (5) has no solution in
this case.

We may thus suppose that 5 | Π. If 3 - Π, then we may apply our
results obtained for k = 3 to Π(i, i + 1, i + 2) with an appropriate
i = 1, 3 or 4 to conclude that there is no solution in this case. We
may therefore assume that 15 | Π. Further, if 5 | (n + 3d)(n + 4d),
we can argue as previously to obtain a contradiction. Hence we may
suppose that 5 | n(n + d)(n + 2d). Assume first that 5 | n + d. If Π
is odd, then the identity {1, 2, 5, 6} leads to (23) with p = 5 and so,
via Proposition 3.1, a contradiction. If Π is even, then we consider the
identity {1, 3, 4, 6}. If 3 | n + 2d, we are led to an equation of the form
(17) with p = 5. On the other hand, if 3 | n(n + d), then we find a
nontrivial solution to (23) with p = 5. In either case, we contradict
Proposition 3.1.

To complete the proof of Theorem 1.2, in case k = 8, we may thus,
by symmetry, suppose that 5 | n. We divide our proof into two parts.
First suppose that l ≥ 11 prime.

We begin with the case where 3 | n. Necessarily one of n, n + 3d or
n+6d is divisible by 9. If 9 | n, then {1, 3, 4, 6} gives rise to an equation
of the form (18) with D = 2, at least provided Π is odd. When Π is
even, the identity {0, 2, 5, 7} yields (24) and hence a contradiction. If
9 | n + 3d, {0, 1, 6, 7} leads to (20), if Π is odd. If Π is even, from
the same identity we have (24). By Proposition 3.1, in each case, we
conclude that there is no solution to (5). Finally, if 9 | n+6d, then the
identity {0, 3, 4, 7} provides either (20) or (24). In both cases, we have
a contradiction, at least for l ≥ 11 prime.

We argue in a similar fashion if 3 | n + d or 3 | n + 2d. In the first
of these cases, one of the identities {0, 3, 4, 7}, {0, 1, 6, 7}, {1, 3, 4, 6}
or {0, 2, 5, 7}, necessarily implies solutions to either (20) or (24). In
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the second, either {1, 3, 4, 6} yields a solution to (18) with D = 6, or
{0, 2, 5, 7} provides one to equation (24). By Proposition 3.1, we thus
derive a contradiction, in all cases, for l ≥ 11 prime.

Now suppose that l = 7. We use the argument outlined in subsection
3.6; i.e. we appeal to identities of the form (11), corresponding to triples
[q, r, s].

Assume first that, together with 5 | n, we have 3 | n. Since, neces-
sarily, either n or n + 7d is divisible by 72, we distinguish two cases.
Suppose first that 72 | n, and consider the identity [0, 2, 4]. This implies
a congruence of the form(

2ν2(b2)+1
)6 ≡ (2ν2(b4)

)6
(mod 72),

whereby, from (28), (ν2(b2), ν2(b4)) = (0, 1) or (1, 2). From the identity
{1, 2, 2, 3}, if ν2(n + 2d) ≥ 3, we derive a nontrivial solution to (21)
with p = 3, contrary to Proposition 3.1. We conclude, then, that
ν2(n + 2d) = 1 (and hence ν2(n + 6d) = 1). It thus follows, from
[0, 3, 6], that (

3ν3(b3)
)6 ≡ (3ν3(b6)

)6
(mod 72)

and so ν3(b3) = ν3(b6) = 1. The identity [3, 4, 6] thus leads to a non-
trivial solution to equation (26), with n = 7 and α = 1, contradicting
Proposition 3.2.

We next suppose that 72 | n + 7d. If 2 - Π, then [1, 4, 7] immediately
contradicts (28). If 2 | n, arguing as previously, we find, from [1, 3, 7],
that ν3(b3) = 4 and hence [2, 3, 7] implies that ν2(b2) = 6. If, however,
2 | n+d, [4, 6, 7] gives that ν3(b6) = 6 whence, from [3, 6, 7], ν2(b3) = 6.
In either case, [3, 4, 7] now contradicts (28).

Assume next that 3 | n + d. Suppose first that 72 | n. The identity
[0, 2, 6] implies that(

3 · 2ν2(b2)
)6 ≡ (2ν2(b6)

)6
(mod 72)

and so

(30) ν2(b6)− ν2(b2) ∈ {−4, 3}.
On the other hand, [0, 3, 6] implies that ν2(b6) = 1, contradicting (30)
(since we have min{ν2(n + 2d), ν2(n + 6d)} ≤ 2).

Next, let 72 | n + 7d. In this case, the identity [2, 6, 7] plays the role
of [0, 2, 6] in the previous situation. We have that

ν2(b2)− ν2(b6) ∈ {−4, 3}
and hence, since [3, 6, 7] implies that ν2(b6) = 5, again a contradiction.

Finally, suppose that 3 | n + 2d. As the situation with Π odd was
covered previously for l = 7, we need distinguish only two cases. If
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2 | n, then [0, 1, 3] (if 72 | n) or [1, 3, 7] (if 72 | n + 7d) each contradict
(28). If, however, 2 | n + d, the identities [0, 4, 6] and [4, 6, 7] play a
like role. This completes the proof of Theorem 1.2 for k = 8 and l ≥ 7
prime.

3.8. The case k=9. Next, consider k = 9. Symmetry allows us to
assume that 7 | n, otherwise we can reduce to the preceding situation.
We may also assume that 5 | n+3d, or, by applying our results with k =
8 to the first eight terms of Π, again obtain a contradiction. If 3 fails
to divide the product Π, then we may use what we have proved already
for k = 3, via consideration of Π(4, 5, 6), to deduce a contradiction. If
3 | n, then {1, 2, 4, 5} yields (15) with β = 1. Similarly, if 3 | n + d,
{3, 5, 6, 8} provides (18) with D = 6, if Π is odd, and (17) with p = 5,
if Π is even. Using Proposition 3.1, we obtain contradictions in either
case. If 3 | n+2d, then the identity {0, 1, 6, 7} gives rise to an equation
of the shape (18) with D = 6, if Π is odd, while {3, 5, 6, 8} leads to an
equation of the form (23) with p = 5, if Π is even. Applying Proposition
3.1 thus completes the proof of Theorem 1.2, in case k = 9 and l ≥ 7
prime.

3.9. The case k=10. When k = 10, we reduce to the preceding case
unless either 7 | n, 5 | n+9d, or 5 | n, 7 | n+9d. By symmetry, we may
suppose that the first of these occurs. Then, if 3 - Π, we may apply
our result with k = 3 for Π(1, 2, 3) to obtain a contradiction. In case
3 | n(n+d), {2, 5, 5, 8} yields (15) with β = 0, providing a contradiction
by Proposition 3.1. We thus suppose that 3 | n + 2d. To complete
the proof of Theorem 1.2 in this case, we will utilize Proposition 3.2.
Necessarily, precisely one of n + 2d, n + 5d or n + 8d is divisible by 9.
If 9 | n + 2d, the identity [5, 6, 8] implies a nontrivial solution to (26),
contradicting Proposition 3.2. Similarly, if 9 | n + 5d or 9 | n + 8d,
application of [2, 3, 8] or [2, 3, 5], respectively, leads to a contradiction.
We conclude, then, that equation (5) has no solution, with k = 10 and,
again, prime l ≥ 7.

3.10. The case k=11. Finally, let k = 11. If 5 - Π, then we may
apply the results from the preceding case to the first or last ten terms
of Π, to obtain a contradiction. If 5 | Π, we will, as when k = 10,
repeatedly appeal to Proposition 3.2 to complete the proof. In what
follows, we will assume, via symmetry, that either 7 - Π or 7 | (n +
4d)(n + 5d)(n + 6d), or that 7 | n(n + d). The last case is the only one
in which 7 | bi for some 0 ≤ i ≤ 10.

Let us begin by supposing that 5 | n. From the identity {3, 6, 6, 9},
we deduce a solution to (15) unless 3 | n. If 3 | n, then 9 divides
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exactly one of n, n + 3d or n + 6d. If 9 | n, then [3, 4, 6] thus implies
a (nontrivial) solution to (26), contrary to Proposition 3.2. Similarly,
[6, 7, 9] (if 7 | n + d) and [6, 8, 9] (in the remaining cases) lead to the
same conclusion if 9 | n + 3d. Finally, if 9 | n + 6d, we may apply
[3, 7, 9] (if 7 | n + d) and [1, 3, 9] (in the remaining cases) to reach a
contradiction.

In case 5 | n + id for i = 1, 2 or 4, we argue similarly. In the first of
these cases, either {4, 7, 7, 10} (if 7 | n + d) or {2, 5, 5, 8} (otherwise)
implies that 3 | n + d (respectively, 3 | n + 2d). The identities [4, 5, 7],
[7, 9, 10] and [2, 4, 10] (respectively, [2, 3, 5], [5, 7, 8] and [2, 4, 8]) thus
combine to contradict Proposition 3.2. If 5 | n+2d, {3, 6, 6, 9} leads to
the conclusion that 3 | n, whereby [3, 4, 6], [3, 5, 9] and either [0, 4, 6] (if
7 | n + d) or [6, 8, 9] (in all other cases) provide the desired conclusion.
If 5 | n + 4d, we combine the identities {2, 5, 5, 8}, [2, 3, 5], [5, 6, 8] and
[2, 8, 10] (if 7 | n), or {0, 3, 3, 6}, [0, 2, 3], [3, 5, 6] and [0, 2, 6] (in all
other cases) to obtain a contradiction.

It remains, then, to deal with the possibility that 5 | n + 3d. In
this situation, we require a somewhat more involved argument. If n
is not divisible by 7, then {4, 7, 7, 10}, together with Proposition 3.1,
implies that 3 | n + d, whereby one of [4, 6, 7], [7, 9, 10] or [2, 4, 10]
contradicts Proposition 3.2. We may thus suppose that 7 | n. In this
case, {1, 2, 4, 5} yields a solution to (15) unless 3 | (n + d)(n + 2d). If
3 | n + 2d, {0, 1, 6, 7} implies a solution to either (15) or (18) (with
D = 6), unless

(31) max{ν2(n + id) : i = 0, 1, 6, 7} = 2.

In the latter case, from {0, 1, 6, 7}, we have a solution to (17) (with
p = 7) and hence may conclude further that l = 7. If 72 | n, the
identity [0, 1, 9] implies that(

9 · 2ν2(b1)
)6 ≡ (2ν2(b9)

)6
(mod 72),

contrary to (31). If 72 | n + 7d, then, from [1, 7, 9],(
3 · 2ν2(b9)

)6 ≡ (2ν2(b1)
)6

(mod 72),

again contradicting (31).
Finally, if 3 | n + d, from {2, 5, 6, 9}, we deduce solutions to either

(15) or (18) (with D = 6), unless

(32) max{ν2(n + id) : i = 2, 5, 6, 9} = 3.

In this case, {0, 1, 6, 7} implies solutions to equation (24) and so, via
Proposition 3.1, we may assume further that l = 7. If 72 | n, [0, 2, 6]
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gives (
3 · 2ν2(b2)

)6 ≡ (2ν2(b6)
)6

(mod 72),

contradicting (32). If 72 | n + 7d, [2, 6, 7] yields(
5 · 2ν2(b6)

)6 ≡ (2ν2(b2)
)6

(mod 72),

again contrary to (32). This completes the proof of Theorem 1.2, in
case l ≥ 7 is prime.

4. Proof of Theorem 1.2 in case l = 2

Having disposed of the possibility of equation (5) having solutions
with l divisible by a large prime, we are now left with the task of
dealing with the primes l = 2, 3 and 5. In this section, we treat the
first of these cases. For l = 2 and fixed k ≥ 4, a solution to (5)
corresponds to a rational point on one of finitely many hyperelliptic
curves. Our argument will essentially rely upon the fact that, with the
given restrictions on b, the curves in question may often be shown to
cover elliptic curves of rank 0 over Q.

4.1. The case k=4. In case k = 4, we actually deduce a stronger
result, which will prove useful for larger values of k :

Lemma 4.1. The only solutions in coprime nonzero integers n and d,
with d > 0, and nonzero integer y, to the Diophantine equations

Π(0, 1, 2, 3) = by2, b ∈ {±1,±2,±3, 5,−6, 15,−30}(33)

Π(0, 1, 2, 4) = by2, b ∈ {−1,±2,±3, 5, 6,±10,−15,−30}(34)

Π(0, 1, 3, 4) = by2, b ∈ {±1,±2,±3,−5, 6,−15, 30}(35)

Π(0, 1, 2, 5) = by2, b ∈ {−1,±2, 3,±5, 6,±10,±15}(36)

correspond to the identities

(−3) · (−1) · 1 · 3 = 32 and (−2) · (−1) · 1 · 2 = 22.

We remark that, by symmetry, results for Π(0, 1, 2, 4) and Π(0, 1, 2, 5)
lead to similar statements for Π(0, 2, 3, 4) and Π(0, 3, 4, 5), respectively.
Further, we may translate a claim for Π(0, p, q, r) to one for Π(i, p +
i, q + i, r + i), for any i ∈ Z.

Proof. Via the change of variables

X = pqb

(
rd + n

n

)
, Y =

pqryb2

n2
,

if p, q and r are integers with

0 < p < q < r,
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solutions in nonzero integers n, d, y to

(37) Π(0, p, q, r) = by2

correspond to rational points (X, Y ) on the elliptic curve

E : Y 2 = X(X + p(r − q)b)(X + q(r − p)b).

The lemma follows from the observation that, for the choices of p, q, r
and b described above, the curves E = E(p, q, r, b) have rank 0 over Q
(together with a routine calculation to ensure that the torsion points
yield only the stated solutions to (37)). For the given triples (p, q, r)
and all other values of b dividing 30, the curves E have positive rank
(and hence the equations (37) have, for these p, q, r and b, infinitely
many solutions in nonzero coprime integers n and d). To verify these
facts requires a routine computation in, say, mwrank (though Magma
or other symbolic computation packages would be equally suitable). By
way of example, if (p, q, r) = (1, 2, 3), the elliptic curves correspond-
ing to (37) are birational to the following curves (where we adopt the
notation of Cremona [9]) :

b Cremona b Cremona b Cremona b Cremona
1 24A 3 144B 6 576I 15 3600K

−1 48A −3 72A −6 576D −15 1800S
2 192C 5 600D 10 4800C 30 14400SSSS

−2 192D −5 1200A −10 4800BBB −30 14400X

If b ∈ {±1,±2,±3, 5,−6, 15,−30}, then it is readily checked that
the corresponding curves have rank 0. In all cases, except for b = 1,
we have E(Q)tors isomorphic to Z/2Z×Z/2Z, where the torsion points
map back to only the trivial solutions to (37), with n/d = 0,−p,−q,−r
and y = 0. If b = 1, then there are additional torsion points given by
(X, Y ) = (−2,±2) and (2,±6). The latter of these corresponds to a
solution to (37) with d = 0, while the former yields (n, d) = (−3, 2).

For the remaining triples (p, q, r), we argue similarly. In all cases,
for the stated values of b, we find rank 0 curves with

E(Q)tors ' Z/2Z× Z/2Z,

unless (p, q, r, b) = (1, 3, 4, 1), in which case

E(Q) ' Z/2Z× Z/4Z.

The additional torsion points, on this model of Cremona’s 48A, cor-
respond to, again, a trivial solution to (5), and to the case (n, d) =
(−2, 1). �
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4.2. The case k=5. Next, let k = 5. By the above results for equation
(33), if we write S(m) for the square-free integer of maximum modulus
dividing m, it follows, recalling (10), that

S(b0b1b2b3) = S(b1b2b3b4) = 6.

Multiplying these two terms together, we conclude that S(b0b4) = 1 and
so, since d > 0 implies that the sequence sign(bi) is nondecreasing in i,
necessarily the bi are all of the same sign. On the other hand, Lemma
4.1, as applied to (35), leads to the conclusion that S(b0b1b3b4) = −6,
a contradiction.

4.3. The case k=6. The great majority of our work, if l = 2, is
devoted to the situation when k = 6. The easy part of this case is the
following result.

Lemma 4.2. The Diophantine equation

(38) Π(0, 1, 2, 3, 4, 5) = by2, b ∈ {±1,±2,±3,−5,±6,±10,±15, 30}
has no solutions in coprime nonzero integers n and d, with d > 0 and
nonzero integer y.

Proof. Writing

n/d = (x− 5)/2, y = d3v/23,

we find that solutions to (38) correspond to rational points on the genus
2 curve

(x2 − 1)(x2 − 9)(x2 − 25) = bv2.

This genus 2 curve obviously covers the elliptic curves

(X − 1)(X − 9)(X − 25) = bY 2 and (1−X)(1− 9X)(1− 25X) = bY 2.

It is easily checked with a suitable computer algebra package that for
each of the values of b mentioned in the lemma, at least one of these
curves has rank 0 and that its rational points are only the 4 rational
2-torsion points with Y = 0 or Y = ∞. These points correspond to
solutions with y = 0. �

To complete the proof of Theorem 1.2 in case k = 6 and l = 2, it
remains to deal with the values

b ∈ {−30, 5}.
First assume that b = −30. By symmetry, we may suppose that

5 | b0b1b2 (and consequently, 5 - b3b4b5). We start with the case where
5 | b0. By Lemma 4.1 (equation (36)),

S(b0b1b2b5) = ±30 and S(b0b3b4b5) = ±30.
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Thus S(b1b2b3b4) = ±1 which, by Lemma 4.1, gives a contradiction. If
5 | b1 then Lemma 4.1 leads to the conclusion that S(b2b3b4b5) = 6,
whence, from the fact that b < 0, n < 0 and n + d > 0. From (34), we
thus have S(b0b2b3b4) = −6, S(b0b1b2b4) = −5 and so S(b0b5) = −1,
whereby b0 = −1, b5 = 1. From Lemma 4.1, as applied to (33), we
thus have b = −30, S(b1b2b3b4) = 30. It follows, then, that b1 = 5 and
so S(b2b4) = 1 and b3 = 6, whence

S(b0b1b2b3) = −30,

contradicting Lemma 4.1. If 5 | b2 then by Lemma 4.1, as applied to
(35), S(b0b1b3b4) = −6. As n+5d > 0, we have n+2d > 0. Hence n < 0
and n+d > 0. By Lemma 4.1, we have S(b0b1b2b4) = S(b0b2b3b4) = −5.
Thus 3 - b0b1b3b4, which contradicts S(b0b1b3b4) = −6.

Finally, let b = 5. In this case, the equation Π6 = by2 defines a
hyperelliptic curve of genus 2, which fails to cover a rank 0 elliptic
curve over Q. Further, since the Jacobian of this curve has Mordell-
Weil rank 2, traditional Chabauty-type methods do not suffice to find
the rational points in question. To deal with this situation, we will
apply recent techniques of Bruin and Flynn [5] (cf. [3] and [4]). For
our purposes, it will be preferable to consider the isomorphic curve

C : Y 2 = (X − 60)(X − 30)(X + 20)(X + 30)(X + 60).

To see how this is obtained from a solution to Π6 = 5y2, write x = n/d
and t = 5y/d3, so that, after homogenizing,

t2z4 = 5x6 + 75x5z + 425x4z2 + 1125x3z3 + 1370x2z4 + 600xz5.

The change of variables

x = −2X + 60Z, t = −60Y, z = X

thus leads to

Y 2Z3 = X5 + 20X4Z − 4500X3Z2 − 90000X2Z3

+3240000XZ4 + 64800000Z5

or, dehomogenizing, the curve C.

Proposition 4.3. The only rational solutions (X, Y ) to the equation

Y 2 = (X − 60)(X − 30)(X + 20)(X + 30)(X + 60)

are with

X ∈ {−60,−30,−20,−15, 20, 30, 60}.
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Proof. Begin by observing that a rational point on C gives rise to a
rational solution to the system of equations

X − 60 = δ1Y
2
1

X − 30 = δ2Y
2
2

X + 20 = δ3Y
2
3

X + 30 = δ4Y
2
4

X + 60 = δ5Y
2
5 ,

for some 5-tuple (δ1, . . . , δ5) where δi ∈ Q∗/Q∗2. In fact, since the
roots of the linear factors are all distinct modulo any prime p outside
the set {2, 3, 5}, it can easily be shown that these {δi} can be taken
to be {2, 3, 5}-units. A straightforward 2-descent on JacC(Q) (see e.g.
[7], [40]) shows that the {δi} lie in a group isomorphic to (Z/2Z)6,
generated by

(−3,−5, 5, 15, 5), (3, 1,−1,−15, 5), (2, 5, 1, 5, 2),
(3, 6, 1, 15, 30), (15, 15, 10, 3, 30), (3, 1, 5, 30, 2).

This group corresponds to the 2-Selmer group of the Jacobian of our
curve. Since the torsion part of the Mordell-Weil group of JacC(Q) is
generated by

{[(60, 0)−∞], [(30, 0)−∞], [(−20, 0)−∞], [(−30, 0)−∞]},

this implies, upon noting the (independent) divisors [(−15, 3375)−∞]
and [(20, 8000) − ∞], of infinite order, that the rank of JacC(Q) is
2. As mentioned earlier, this fact ensures that a direct application of
traditional Chabauty methods is not a viable option. To proceed, we
will consider covers of C, as in [3], [4].

Note that if the system above has a solution, then this gives rise to
a solution to, say,

(X − 60)(X − 30)(X + 20) = δ1δ2δ3(Y1Y2Y3)
2.

Since this equation describes a genus 1 curve and there are obvious
rational points on it, it models an elliptic curve, the Mordell-Weil rank
of which we may bound via 2-descent. If this rank turns out to be zero,
then we automatically find only a finite number of candidate solutions
to our original system.

Applying this argument with all choices of 3 or 4 equations from
the above system enables us to greatly reduce the possibilities for the
5-tuples {δi}. We readily verify that, for the choices of {δi} which
lead to coverings of rank 0 elliptic curves over Q, the corresponding
torsion points produce no points on C other than those with Y = 0.
Carrying out this procedure for all 64 potential {δi}, there remain only
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2 possible 5-tuples that lead, in all cases, to elliptic curves of positive
rank, namely

(−3,−5, 5, 15, 5) and (−10,−10, 10, 2, 5).

They correspond to the solutions (X, Y ) = (−15, 3375) and (X, Y ) =
(20, 8000), respectively. This is to be expected : these are non-trivial
solutions and, on each of the covered genus 1 curves, they have no
particular reason to map to a torsion point. Indeed, in each case, they
correspond to points of infinite order.

Note also that the original equation has an extra automorphism given
by (X, Y ) 7→ (6 − X, Y ) and that these two rational points are inter-
changed under this automorphism. Therefore, if we show that the
values (X, Y ) = (−15,±3375) are the only solutions corresponding to
the 5-tuple (−3,−5, 5, 15, 5), then we may reach a similar conclusion,
via symmetry, for (X, Y ) = (20,±8000) and (−10,−10, 10, 2, 5). We
will therefore specialize the δi to (−3,−5, 5, 15, 5).

From consideration of the system of equations

−3X + 180 = Z2
1

−5X + 150 = Z2
2

5X + 100 = Z2
3

15X + 450 = Z2
4

5X + 300 = Z2
5 ,

let us therefore adopt the strategy suggested in [5] and analyze the
fibre product of the following two covers of the X-line :

(39) (−5X + 150)(5X + 100)(15X + 450) = (Z1Z2Z3)
2

and

5X + 300 = Z2
5 .

This gives us a V4-extension of the X-line. The fibre-product D is a
new curve of genus 2 with Jacobian isogenous to the product of the
elliptic curve (39) and the quadratic subcover

(−5X + 150)(5X + 100)(15X + 450)(5X + 300) = (Z1Z2Z3Z5)
2

(each of these genus 1 curves has rank 1). Substituting

X =
(
Z2

5 − 300
)
/5

into (39), we obtain a curve isomorphic to

D : −(u2 − 2)(9u2 − 8)(3u2 − 2) = v2.
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Arguing as previously, a rational point (u, v) on this curve gives rise to
a solution of the system of equations

3u2 − 2 = v2
1

9u2 − 8 = v2
2

u2 − 2 = −v2
3.

Again, we might, via products of pairs of these equations, be led to
consider elliptic covers E over Q. The presence of the points (±1,±1)
on each of these curves, however, suggests that they will have positive
rank and, indeed, it is easy to verify that they do. On the other hand,
by factoring the above equations, we may obtain elliptic curves over
a suitable ground field extension. This is a useful observation at this
stage because, in such a situation, a rank 1 curve may still permit a
successful Chabauty-type argument.

Let us choose α with α2 = 2 and set K = Q(α). Consider the
equations

Q(u) = (u− α)(3u + 2α)

and

R(u) = −9u4 − 3αu3 + 18u2 + 2αu− 8.

Since NormK/Q(Q) = (u2−2)(9u2−8), if, for u ∈ Q, there are v1, v2, δ ∈
K∗ satisfying

Q(u) = δv2
1

R(u) = δv2
2,

we must have that −NormK/Q(δ) is a square in Q. Furthermore, it is
clear that δ can be taken to be a square-free {2, 3, 5}-unit in K∗ (or
perhaps, to be more precise, we should say a {α, 3, 5}-unit).

Applying local arguments, restricting u to values in Qp and seeing if
there are v1, v2 ∈ K ⊗Qp satisfying the equations above, we find that,
in fact, we can restrict attention to either δ = −α − 1 or δ = α + 1.
These are readily seen to correspond to the points (1,±1) and (−1,±1),
respectively. Again, the automorphism (u, v) 7→ (−u, v) interchanges
these points. It thus suffices, by symmetry, to consider only the case
where δ = α + 1.

We find, after a little work, that the curve defined by the equation
R(u) = (α + 1)v2

2 is isomorphic to

E : y2 = x3 + 18(1− α)x2 + 4(3− 2α)x.

In these coordinates,

u =
(2α− 3)x + (−2α− 2)y − 4α− 19

7x + (2α + 2)y + (−15α− 36)/2
.
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The group E(K) = Z×Z/2Z is generated (up to a finite index, prime
to 2 · 41) by g = (4α + 6, 10α + 10) and T = (0, 0). A standard
Chabauty-type argument (see [3], [4]) using the prime 41 shows that 0
and −2g are the only two points in E(K) that yield a rational value for
u, namely −1. Tracing this backwards, we find that this corresponds
to the point (X, Y ) = (−15,±3375), as claimed. This completes the
proof of Proposition 4.3. �

With this proposition in place, it is a simple matter to check that
the equation Π6 = 5y2 has only the nontrivial solutions n ∈ {−1, 6}
and d = 1, concluding the proof of Theorem 1.2 for (k, l) = (6, 2).

4.4. The cases k = 7, 8, 9, 10 and 11. To treat the cases 7 ≤
k ≤ 11, it is enough to observe that either there exists an i with
0 ≤ i ≤ k−8 for which 7 | n+ id (so that 7 divides precisely two terms
of the product Π), or that no such i exists (whence, 2 divides ν7(n+jd)
for 0 ≤ j ≤ k−1). In the former case, we may apply our result for k = 6
to the product Π(i+ 1, i+ 2, . . . , i + 6) to reach the desired conclusion.
In the latter, considering Π(0, 1, 2, 3, 4, 5) suffices. In particular, we
find only the solutions corresponding to (n, d) = (−7, 2) (with k = 8
or 9) and to (n, d) = (−9, 2) (with k = 9 or 10). This completes the
proof of Theorem 1.2, in case l = 2.

5. Proof of Theorem 1.2 in case l = 3

As noted in Section 2, given l and k, finding all coprime solutions
n, d to equation (1) can be accomplished by determining the rational
points on a finite number of algebraic curves. Up to this point, we
have essentially relied upon equation (10) to derive single curves of, for
instance, the shape (12). In this section, we will use all the information
at our disposal, noting that a solution to (1), via elimination of n and d
in the corresponding equations (10), implies the existence of a rational
point on the non-singular curve (in Pk−1) Cb,k,l, defined by the equation∏

(s− t)bry
l
r + (t− r)bsy

l
s + (r − s)bty

l
t = 0,

where the product runs over all

{r, s, t} ⊂ {0, . . . , k − 1}.

Here, we write b as shorthand for (b0, . . . , bk−1). We will suppress the
dependence on k and l in the notation, and merely write Cb. For the
rest of this section we take l = 3. For any given triple {r, s, t} ⊂
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{0, . . . , k − 1}, we have, as noted previously, a morphism

π{r,s,t} : Cb → D{r,s,t},b
(y0 : · · · : yk−1) 7→ (yr : ys : yt)

where D{r,s,t},b is a smooth diagonal plane cubic of the form

D{i,j,k},b : Au3 + Bv3 + Cw3 = 0.

It is convenient, for our purposes, to consider the second morphism

φ : D{r,s,t},b → Eabc

(u : v : w) 7→ (a3buvw : a3b2v3 : a2w3),

to the curve

Ed : y2z + dyz2 = x3.

Since Ed and Ed′ are isomorphic if and only if d/d′ is a cube and, for our
applications, we only need to consider d with P (d) ≤ 5, the following
lemma thus classifies the ranks of Ed(Q) we encounter.

Lemma 5.1. Let d = 2e23e35e5 for e2, e3, e5 ∈ {0, 1, 2}. For

d ∈ {6, 9, 12, 15, 20, 50, 75, 90, 180, 450, 900}

we have rk E(Q) = 1. For other values of d we have rk E(Q) = 0.

Proof. For each of the 27 possible values of d, the statement is easily
checked with any of the computer algebra systems capable of bounding
ranks of elliptic curve using 2-descent. Alternatively, one could com-
pute the analytic ranks of these curves and, since we find them to be
at most 1, conclude they must equal the actual ranks. �

For each Cb, it thus suffices to find an elliptic curve Ed of rank 0 which
it covers. For each such rank 0 curve encountered, we may analyze
each of the (finitely many) torsion points T ∈ Ed(Q) and determine
the rational points in the 0-dimensional fibre (φ ◦ π)−1(T ). This is
easily done with any modern computer algebra package; for a Magma
[2] transcript of these computations, see [6].

We will now treat the cases 3 ≤ k ≤ 11 in turn. For 3 ≤ k ≤ 5
and l = 3, we note that Theorem 1.2 appears to be a consequence of
Theorems 8 and 9 of [19]. Unfortunately, as we have previously noted,
the proofs of these theorems require modification as they depend upon
an incorrect result (Lemma 6 of [19]).
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5.1. The case k=3. To begin, we need to determine the solutions to
the equation

n(n + d)(n + 2d) = by3,

for b = 1, 2 and 4. The coprimality of n and d implies that gcd(bi, bj) |
(i− j), yielding 10 possible values for b.

Note that, in this case, Cb is the same as the curve D{0,1,2},b. Further-
more, each corresponding Ed is of rank 0. The points corresponding
to the rational torsion of Ed lead, after a little work, to the arithmetic
progressions (modulo reversion and (n, d) 7→ (−n,−d))

(−2, 1, 4), (0, 1, 2), (−1, 0, 1) and (1, 1, 1).

5.2. The case k=4. Here, we have to consider

b ∈ {1, 2, 4, 3, 6, 12, 9, 18, 36}.

Using the coprimality of n and d, these lead to 180 values of b. For
most choices of b, one of the curves D{0,1,2}, D{0,1,3}, D{0,2,3} or D{1,2,3}
corresponds to an Ed of rank 0. A straightforward computation shows
that those values of b lead only to the arithmetic progressions

(0, 1, 2, 3), (−1, 0, 1, 2), (1, 1, 1, 1) and (−3, 1, 1, 3).

However, for b = (1, 2, 3, 4) or (−6,−1, 4, 9), we find that all corre-
sponding genus 1 subcovers of Cb have infinitely many rational points.
Furthermore, since (1 : 1 : 1 : 1) ∈ Cb(Q), local considerations also fail
to rule out these possibilities. To proceed, we need to consider other
quotients of Cb.

Let us write ζ for a primitive cube root of unity and define morphisms

ζ0 : (y0 : y1 : y2 : y3) 7→ (ζy0 : y1 : y2 : y3)
ζ1 : (y0 : y1 : y2 : y3) 7→ (y0 : ζy1 : y2 : y3)
ζ2 : (y0 : y1 : y2 : y3) 7→ (y0 : y1 : ζy2 : y3).

Obviously, we have

〈ζ0, ζ1, ζ2〉 ⊂ AutQ(Cb).

Writing C for one of C(1,2,3,4) or C(−6,−1,4,9), we note that quotients
of C by subgroups defined over Q yield curves covered by C. For
instance, D{1,2,3} ' C/〈ζ0〉 and the corresponding Ed is isomorphic to
C/〈ζ0, ζ1ζ

2
2 〉.

For our purposes, we will focus on the order 9 subgroup

H = 〈ζ0ζ1, ζ0ζ2〉.
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To derive a model for the curve D = C/H, we consider the H-invariant
functions y0y

2
1y2y

2
3, y3

2, y3
3 on C. In fact, for b = (1, 2, 3, 4) and

x = 2y2
0y1y

2
2y3/(9y

6
2 − 8y3

2y
3
3)

y = (−27y6
2 + 36y3

2y
3
3 − 16y6

3)/(9y
6
2 − 8y3

2y
3
3),

we obtain

D : y2 = x6 − 3x3 + 9.

Via a 2-descent in the style of [8], implemented by Stoll in Magma
as described in [40], together with a point search and some canonical
height computations (see [39], [41]), we find that

Jac(D)(Q) ' Z/3× Z/3× Z.

Using the identification Jac(D)(Q) = Pic0(D/Q) and the convention
that ∞+,∞− denote the two branches of D above x = ∞, we write

Jac(D)(Q) = 〈[∞+ −∞−], [(0, 3)−∞−], [(2, 7)−∞−]〉,

where the first two generators are of order 3 and the last generates the
free part.

Via a standard application of explicit Chabauty-type methods in the
style of [15], implemented in Magma by Stoll, and using p = 7, we
compute that D(Q) has at most 6 elements and that, in fact,

D(Q) = {∞+,∞−, (0, 3), (0,−3), (2, 7), (2,−7)}.

When we pull back these points along the map

π : (y0 : y1 : y2 : y3) 7→ (x, y),

we see that only (2,−7) lifts to a rational point (1 : 1 : 1 : 1) ∈ C(Q).
This completes the first part of the proof.

For b = (6, 1, 4, 9) we proceed similarly and, in fact, writing

x = 2y0y
2
1y2y

2
3/(8y

3
2y

3
3 − 9y6

3)
y = (16y6

2 − 36y3
2y

3
3 + 27y6

3)/(8y
3
2y

3
3 − 9y6

3),

find that C(6,1,4,9) covers the same curve D. Lifting the rational points
of D along the map π yields, again, that only (2,−7) gives rise to a
rational point on Cb. This completes the proof of Theorem 1.2 provided
k = 4 and l = 3.

5.3. The case k=5. If k = 5, dividing Π by one of n or n + 4d
necessarily reduces the problem to the case k = 4. A short calculation
shows that no new solutions to (5) accrue.
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5.4. The case k=6. Let k = 6. If 5 - (n + 2d)(n + 3d), then we may
apply our result for k = 4 to Π(i, i+1, i+2, i+3) for one of i = 0, 1 or
2, to conclude that the only solutions to (5), in this case, are given by

(n, d) = (−5, 2), (−6, 1) and (1, 1).

By symmetry, we may suppose that 5 | n+2d. This leads to 1976 pos-
sible values for b. For each of these, one of the 20 elliptic curves covered
by Cb is of rank 0, whereby we can employ our previous approach. To
cut down on the amount of computation required, however, it is worth
noting that one can eliminate most b from consideration by testing if
Cb(Qp) is nonempty for, say, p = 2, 3 and 7. This reduces the number
of b to treat to 18 and, for each of these, Cb indeed has a rational point.
These all correspond to the arithmetic progression

(−2,−1, 0, 1, 2, 3).

5.5. The cases k = 7, 8, 9, 10 and 11. For the cases 7 ≤ k ≤ 11, we
argue exactly as when l = 2; in all situations, consideration of one of
Π(i+1, i+2, . . . , i+6) suffices to reduce the problem to the previously
treated k = 6. This completes the proof of Theorem 1.2 when l = 3.

6. Proof of Theorem 1.2 in case l = 5

We begin this section by proving a pair of results on ternary Dio-
phantine equations of signature (5, 5, 5). The first follows from a variety
of classical arguments. The second is a consequence of work of a much
more recent vintage, due to Kraus [21].

Proposition 6.1. Let C be a positive integer with P (C) ≤ 5. If the
Diophantine equation

(40) X5 + Y 5 = CZ5

has solutions in nonzero coprime integers X, Y and Z, then C = 2 and
X = Y = ±1.

Proof. Without loss of generality, we may suppose C = 2α3β5γ with
0 ≤ α, β, γ ≤ 4. By old results of Dirichlet, Lebesgue (see e.g. [13], p.
735, item 20 and p. 738, item 37), and P. Dénes (c.f. [12]), for (40)
to have a solution in coprime nonzero integers with XY Z 6= ±1, we
require C > 2 and

C4 ≡ 1 (mod 52).

This implies that γ = 0 and

(α, β) ∈ {(1, 2), (2, 4), (3, 1), (4, 3)} .
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From the fact that both 2 and 3 are primitive roots modulo 5, and the
exponent 5 is a regular prime, a classical result of E. Maillet (see e.g.
[13], p. 759, item 167) leads to the conclusion that 5 - Z. Since, for
each remaining value of C, we have

C4 6≡ 24 (mod 52),

Theorem 1 of Győry [16] thus implies that

r4 ≡ 1 (mod 52),

for every divisor r of C. The parity of the remaining C (whereby we
are free to choose r = 2 above) provides an immediate contradiction
and hence the desired result. �

Proposition 6.2. Let A and B be coprime positive integers with AB =
2α3β for nonnegative integers α and β with α ≥ 4. Then the Diophan-
tine equation

(41) AX5 + BY 5 = Z5

has no solutions in coprime nonzero integers X, Y and Z.

Proof. This is a result of Kraus [21] and is essentially a consequence of
the fact that there are no weight 2, level N cuspidal newforms of trivial
character, for N dividing 6. �

We suppose throughout this section that l = 5. In what follows,
our arguments will typically rely upon the fact that a careful choice of
identity [q, r, s] leads to an equation of the form (40). In other cases,
such identities imply equations which may be proven insoluble modulo
11 or 25. We shall employ the trivial observation that, for k ≤ 11, at
most one factor of Πk is divisible by 11.

6.1. The case k=3. From the identity [0, 1, 2], we deduce a solution in
nonzero integers to equation (40), with P (C) ≤ 2 (and hence C = 2).
A short calculation leads to the conclusion that (n, d) = (−2, 3) or
(−4, 3).

6.2. The case k=4. The following lemma is a more precise version
of Theorem 1.2 in case k = 4. It will prove useful in analyzing larger
values of k.

Lemma 6.3. Suppose that there exist nonzero integers n, d, y and b
with b, d positive and gcd(n, d) = 1, satisfying

(42) Π4 = by5 with P (b) ≤ 3.

Then either (n, d) = (−3, 2) or, up to symmetry,

(43) (b0, b1, b2, b3) = (4, 3, 2, 1) or (9, 4, 1, 6).
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It is likely that (n, d) = (−9, 5), (−6, 5), (−4, 1), (−3, 2) and (1, 1)
are the only solutions of (42).

Proof. Let us suppose we have a solution to (42) in nonzero integers
n, d, y and b, with b, d > 0 and gcd(n, d) = 1. If 3 fails to divide the
product bibi+1bi+2 for either i = 0 or i = 1, we may reduce immediately
to the case k = 3. We may thus assume, via symmetry, that either
3 | b0 and 3 | b3, or that 3 | b1. In the first case, if ν3(b0b3) = 2, the
identity [0, 1, 3] implies a nontrivial solution to an equation of the form
X5 + Y 5 = 2αZ5 and hence, after a little work, a contradiction via
Proposition 6.1. We may thus suppose, again by symmetry, that 9 | b0.
Further, unless 2 | n + d, we may apply the same identity [0, 1, 3] to
deduce a nontrivial solution to

(44) X5 + Y 5 = 2α3βZ5,

contrary to Proposition 6.1. Combining the identities [0, 1, 2] and
[0, 2, 3] with Proposition 6.2, we may assume that ν2((n+d)(n+3d)) =
3. If ν2(n + d) = 1, [1, 2, 3] leads to a solution to (44) with α = β = 1.
If, on the other hand, ν2(n + 3d) = 1, from the fact that

t5 ≡ 0,±1 (mod 11), for t ∈ Z,

the identity [1, 2, 3] implies that Π(1, 2, 3) is not divisible by 11. It
follows from [0, 1, 3] that ν3(n) = 2 (whereby (b0, b1, b2, b3) is just
(9, 4, 1, 6)).

If, however, 3 | b1, [0, 1, 2] and Proposition 6.1 imply that we may
suppose 2 | n, whereby, again combining [1, 2, 3], [0, 1, 3] and Proposi-
tion 6.2, we may assume that ν2(n(n + 2d)) = 3. In case ν2(n) = 1,
[0, 2, 3] leads to a solution to (44) with β = 1, a contradiction. If
ν2(n) = 2, the same identity [0, 2, 3] implies that 11 fails to divide
n + 2d and so, modulo 11, from [0, 1, 2], we are able to conclude that
ν3(b1) = 1, whence

(b0, b1, b2, b3) = (4, 3, 2, 1).

�

6.3. The case k=5. Let k = 5 and suppose that we have a non-
trivial solution to (5). Then applying Lemma 6.3 to Π(0, 1, 2, 3) and
Π(1, 2, 3, 4), it follows that either n + id = −3, d = 2 for i = 0 or 1
(which fails to yield a solution to (5)) or that both 4-tuples (b0, b1, b2, b3)
and (b1, b2, b3, b4) are in the set :

{(1, 2, 3, 4), (4, 3, 2, 1), (6, 1, 4, 9), (9, 4, 1, 6)} .

Since this is readily seen to be impossible, we conclude that equation
(5) has no solutions in this case.
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6.4. The case k=6. As in case l = 2 or 3, most of our work in proving
Theorem 1.2 is concentrated, if l = 5, in treating k = 6. Let us suppose
we have a nontrivial solution to (5) with P (b) ≤ 5. If 5 fails to divide
the product b0b1b2b3b4b5, then, omitting the factor n + 5d in Π6, we
reduce to the case k = 5 and hence find no new solutions.

By symmetry, it suffices to deal with the cases when 5 | n, 5 | n + d
or 5 | n + 2d. We consider them in turn.

6.4.1. 5 | n. First assume that 5 | n and hence also 5 | n + 5d. Then,
applying Lemma 6.3 to Π(1, 2, 3, 4), we infer that either n + d = −3,
d = 2 (which gives the solution (n, d) = (−5, 2)), or we have, again up
to symmetry,

(b1, b2, b3, b4) = (4, 3, 2, 1) or (9, 4, 1, 6).

Consider the identity

(45) 3(n + d)(n + 4d)− 2(n + 2d)(n + 3d) = n(n + 5d).

If (b1, b2, b3, b4) = (4, 3, 2, 1), (45) implies a nontrivial solution to (40),
contradicting Proposition 6.1. If, however, (b1, b2, b3, b4) = (9, 4, 1, 6),
(45) leads to an equation of the form

34X5 + 22Y 5 = 5tZ5

where t ≥ 2 and 5 - XY . Working modulo 25 and taking 4th powers,
we deduce the congruence

316 ≡ 28 (mod 52),

and hence a contradiction.

6.4.2. 5 | n + d. Consider now the case when 5 | n + d. We apply
Lemma 6.3 to Π(2, 3, 4, 5). It is clear that n+2d = −3, d = 2 does not
provide a further solution to (5). We thus have

(b2, b3, b4, b5) ∈ {(4, 3, 2, 1), (1, 2, 3, 4), (9, 4, 1, 6), (6, 1, 4, 9)}.
In the first of these cases, necessarily b0 = 2·3t for a nonnegative integer
t. From the identity [2, 3, 4], we find that

2y5
2 + y5

4 = 3y5
3

and hence 11 fails to divide y2y3y4. Similarly, [1, 3, 4] yields the conclu-
sion that y1 is coprime to 11, whereby, from [1, 2, 3] and its companion
equation

5ν5(b1)y5
1 + 3y5

3 = 8y5
2,

we may conclude not only that ν5(b1) = 1 (so that b1 = 5), but also

y5
2 ≡ y5

3 ≡ ±1 (mod 11).
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Applying [0, 2, 3], then, we obtain a solution to the equation

(46) 3ν3(b0)−1y5
0 + y5

3 = 2y5
2,

and find, working modulo 11, that necessarily ν3(b0) = 1. Applying
Proposition 6.1 to (46), we have that XY Z = ±1. From this, we obtain
the solution (n, d) = (−6, 1) to (5) (together with the symmetrical
solution (1, 1)).

If we have (b2, b3, b4, b5) equal to either (1, 2, 3, 4) or (9, 4, 1, 6), then
the identities [0, 1, 2] and [0, 2, 4], respectively, lead to nontrivial solu-
tions to (40), contradicting Proposition 6.1. Finally, if (b2, b3, b4, b5) =
(6, 1, 4, 9), then [0, 1, 5] implies that

2ν2(b0)+2y5
0 ≡ 9y5

5 (mod 25)

and so, taking 4th powers, we conclude that ν2(b0) = 2. This, together
with [0, 2, 4], contradicts Proposition 6.1.

6.4.3. 5 | n + 2d. Finally, consider the case where 5 | b2. In light
of the identity {0, 1, 3, 4} and Proposition 3.1, we may suppose that
3 | n(n + d). First, assume that 3 | n. The identity [1, 3, 5] implies
a nontrivial solution to (40) unless 4 | n + d. Under this assumption,
[0, 3, 4] and Proposition 6.1 yield the conclusion that ν3(n) ≥ 2, whence
ν3(n + 3d) = 1 (and so b3 = 6). From [2, 3, 4], we deduce that

5ν5(b2)y5
2 + y5

4 = 12y5
3,

whereby, upon consideration modulo 52, ν5(n+2d) = 1. Analyzing the
same equation, modulo 11, implies that 11 | y2. It follows, then, from
the identity [0, 2, 4], that

3ν3(b0)y5
0 + y5

4 = 10y5
2.

Modulo 11, we therefore have that ν3(b0) = 0 and hence contradict
Proposition 6.1.

The last case to consider in this subsection is when 5 | b2 and 3 | n+d.
From [3, 4, 5] and Proposition 6.1, we may assume that 2 | n+d, whence,
applying a like argument with [0, 1, 3], we necessarily have ν2(n+d) = 1.
Identity [0, 1, 4], again with Proposition 6.1, gives ν3(n + 4d) ≥ 2 (so
that ν3(n + d) = 1 and b1 = 6). Applying [0, 1, 2] thus leads to the
equation

y5
0 + 5ν5(b2)y5

2 = 12y5
1.

Modulo 52 and 11, we again find that ν5(b2) = 1 and that 11 | y2. To
conclude, then, we apply the identity [0, 2, 4] which yields

y5
0 + 3ν3(b4)y5

4 = 10y5
2.
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This implies, modulo 11, that ν3(b4) = 0 and so, via Proposition 6.1, a
contradiction.

6.5. The cases k = 7, 8, 9, 10 and 11. Again, we argue as for l = 2
or 3, applying our results for k = 6 to one of Π(i, i+1, · · · , i+5). This
completes the proof of Theorem 1.2.

7. Proofs of Theorem 1.5 and Corollary 1.6

Having dispatched Theorem 1.2, we will now present the proof of
Theorem 1.5. The reason we proceed in this order is that the techniques
introduced in this section will prove useful in the subsequent treatment
of Theorem 1.4.

Proof of Theorem 1.5. If k ≤ 11, Theorem 1.5 is an immediate con-
sequence of Theorem 1.2 (without any conditions upon d). We thus
assume that k ≥ 12 and that l ≥ 2 is prime. For the π(k) prime values
of l ≤ k, we may apply Theorem 6 of [19] (a slight generalization of
Corollary 2.1 of [10], itself a nice application of Falting’s Theorem) to
conclude that (5) has finitely many solutions as claimed. We may thus
suppose that l > k.

Since d 6≡ 0 (mod Dk) (recall definition (7)), there exists a prime in
the interval [k/2, k) which is coprime to d and hence divides y. Define
p to be the largest such prime. From (5), since gcd(n, d) = 1 and
P (b) < k/2, it follows that either

(i) p | n + id for precisely one i with 1 ≤ i ≤ k − 2, or

(ii) p | n+ id and p | n+(i+ p)d, for some i with 0 ≤ i ≤ k− 1− p.

In case (i), the identity {i−1, i, i, i+1} leads to a ternary equation of
the form (14) where C = 1 and A, B, u and v are nonzero integers with
P (AB) < p and p | uv. We associate to this equation, as in the proof
of Proposition 3.1, a Frey elliptic curve E/Q, with corresponding mod
l Galois representation ρE

l . Again, this arises from a cuspidal newform
f of weight 2, trivial Nebentypus character and level N . Here, from
Lemma 3.2 of [1], N divides

N1 = 64 ·
∏
q<p

q,

where the product is over prime q. Since p | uv and p is coprime to
lN , our Frey curve E has multiplicative reduction at p and so we may
conclude, as in the proof of Proposition 3.1, that

NormKf /Q (ap ± (p + 1)) ≡ 0 (mod l),
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where Kf is the field of definition for the Fourier coefficients an of f .
By the Weil bounds for ap, we have

(47) l ≤ (p + 1 + 2
√

p)g+
0 (N)

where g+
0 (N) denotes the dimension of the space of weight 2, level N

cuspidal newforms of trivial character (as a C-vector space).
Similarly, in case (ii), we have the identity {i, i + j, i + p− j, i + p},

where we are free to choose any j with 1 ≤ j ≤ (p− 1)/2. If n(n + d)
is odd, p = 7 and k = 12 or 13, we will take j = 3 whereby the above
identity leads to a ternary equation of the shape (14) with coprime
A, B, C satisfying ABC ≡ 1 (mod 2), P (AB) < 7, C ∈ {1, 3} and
7 | uv. Otherwise, we take j = 2 (if n(n+d) is even) or j = 4 (if n(n+d)
is odd). These choices lead to equations (14) with P (AB) < p, p− j is
divisible by C, gcd(AB, C) = 1 and p | uv. Since l > k, in each case we
may argue as previously to deduce the existence of a cuspidal newform
f of weight 2, trivial Nebentypus character and level N dividing either
1440 or

N2 = 64 ·
∏
q1<p

q1 ·
∏

q2|p−j

q2

where again the products are over qi prime. Arguing as before, we once
more obtain inequality (47).

From Martin [24], we have, for any N , that

g+
0 (N) ≤ N + 1

12

and, via Schoenfeld [34],∑
p≤x

log p < 1.000081x,

valid for all x > 0. It follows, by routine computation, that

g+
0 (N) < e1.05p

and hence, from (47), that

log l < 3p < 3k.

Since k is fixed, this leaves us with finitely many pairs (k, l) to consider.
Again, via Theorem 6 of [19], we may conclude that, for each pair
(k, l) 6= (3, 2), equation (5) has at most finitely many coprime solutions
with (6). This therefore completes the proof of Theorem 1.5. �

Proof of Corollary 1.6. To deduce Corollary 1.6, suppose now that d ≡
0 (mod Dk) (and, again, that l > k). Since it is easy to show that the



34 M. A. BENNETT, N. BRUIN, K. GYŐRY, AND L. HAJDU

left hand side of (5) is divisible by every prime q ≤ k coprime to d, it
follows, writing

Pk = π(k − 1)− π

(
k − 1

2

)
,

that

(48) Pk ≤ ω(d) ≤ D.

By the Prime Number Theorem, Pk is asymptotically k
2 log k

, as k →∞.

Applying Chebyshev-type estimates for π(x), say those of Rosser and
Schoenfeld [29], we may show that

Pk ≥
k

3 log k
, if k ≥ 18.

From our lower bound (8) for k, we therefore have

Pk ≥
2D log D

log (6D log D)
> D,

for k ≥ 18, contradicting (48). For 12 ≤ k ≤ 17 and (via inequality
(8)) D ∈ {1, 2}, we check to see if inequality (48) is satisfied, obtaining
a contradiction in all cases except when D = 2 and k = 12, 13, 15, 16
or 17. For each of these, Pk = 2 and so the fact that y fails to have a
prime divisor p with k/2 ≤ p < k implies

d =

{
7α11β if k = 12, 13
11α13β if k = 15, 16, 17,

where α and β are positive integers. Theorem 2 of Saradha and Shorey
[32], however, shows that d necessarily has a prime divisor congruent
to 1 (mod l). It follows that l ∈ {2, 3, 5}, contradicting l > k. This
completes the proof of Corollary 1.6. �

8. Finiteness results for 12 ≤ k ≤ 82

In this section, we will present the proof of Theorem 1.4. We begin
by noting that, if P and Q are consecutive primes and if we know that
equation (5) has finitely many solutions with k = 2P + 1 and (6), then
a similar result is immediately obtained for

k = 2P + 2, 2P + 3, . . . , 2Q.

Indeed, for any of these values of k, if Πk is divisible by a prime in the
interval [Q, k], then Theorem 1.5 implies the desired result. We may
thus suppose, if p | Πk, that either p > k or p ≤ P . It follows that we
can write

Π(0, 1, · · · , 2P + 1) = BY l
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for nonzero integers B and Y with P (B) ≤ P , whereby the result
follows, as claimed, from the case k = 2P + 1. To prove Theorem 1.4,
we may, in light of Theorem 1.2, restrict attention to

k ∈ {15, 23, 27, 35, 39, 47, 59, 63, 75},

where we further suppose that Πk is coprime to Dk. Now, for each
prime 3 ≤ p ≤ P , there are p + 1 possibilities : either p | n + sd for
some 0 ≤ s ≤ p− 1, or p fails to divide Π (i.e. p | d). Analyzing these

(49) N(P ) =
∏

3≤p≤P

(p + 1)

cases, for each k under consideration (actually, symmetry allows us to
reduce this number somewhat), we note that if we can find integers
i ≥ 0 and j ≥ 1 such that 6j + i ≤ k − 1 and

(50) gcd

(
Π(i, 3j + i, 6j + i),

∏
3≤p≤P

p

)
∈ {1, 11, 19},

then {i, 3j + i, 3j + i, 6j + i} leads to an equation of the form (22). We
obtain a like conclusion if there exist i ≥ 0, j ≥ 1 with 10j + i ≤ k− 1,
for which

(51) gcd

(
Π(i, j + i, 9j + i, 10j + i),

∏
3≤p≤P

p

)
∈ {1, 11, 19}

(where we employ the identity {i, j + i, 9j + i, 10j + i}).

8.1. The case k = 15. For k = 15 (i.e. if P = 7), a short search
indicates that we can find i and j for which (50) or (51) holds, unless
p | n + ipd for p ∈ {3, 5, 7} where ip are as follows :

case (i3, i5, i7) case (i3, i5, i7) case (i3, i5, i7)
(i) (2, 4, 6) (v) (0, 3, 4) (ix) (2, 4, 0)
(ii) (1, 3, 5) (vi) (2, 2, 3) (x) (1, 3, 6)
(iii) (0, 2, 4) (vii) (1, 1, 2) (xi) (1, 1, 1)
(iv) (2, 1, 3) (viii) (0, 0, 1) (xii) (0, 0, 0)

By symmetry, we may suppose that we are in one of the cases (i),
(ii), (iii), (iv), (ix) or (x). In case (i), {1, 3, 10, 12} implies an equation
of the form (18) with D = 2, if Π is odd, and (15) with β = 0, if Π is
even, unless, in this latter case, we have

(52) max{ν2(n + id) : i = 1, 3, 10, 12} = 2.
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It follows, in this situation, that {2, 3, 11, 12} leads to equation (15)
with α ≥ 2, unless 9 | n + 2d. If we assume, then, that 9 | n + 2d,
{5, 7, 8, 10} implies an equation of the form (15) with β = 0, unless

(53) max{ν2(n + id) : i = 5, 7, 8, 10} = 2.

Combining (52) and (53), we may thus assume ν2(n+10d) = 2, whereby
{5, 8, 9, 12} leads to an equation of the form (20), completing the proof,
in case (i).

In cases (ii), (ix) and (x), we argue in an identical fashion as for case
(i), only with the identities

{1, 3, 10, 12}, {2, 3, 11, 12}, {5, 7, 8, 10} and {5, 8, 9, 12}
replaced by

{0, 2, 9, 11}, {1, 2, 10, 11}, {4, 6, 7, 9}, {4, 7, 8, 11}, in case (ii),

{1, 3, 10, 12}, {2, 3, 11, 12}, {3, 5, 6, 8}, {1, 4, 5, 8}, in case (ix)

and

{0, 2, 9, 11}, {1, 2, 10, 11}, {2, 4, 5, 7}, {0, 3, 4, 7}, in case (x).

In case (iii) (respectively case (iv)), the identity {1, 5, 10, 14} (respec-
tively {0, 4, 9, 13}) leads to the conclusion that

max{ν2(n + id) : i = 1, 5, 10, 14} = 3

whence {8, 9, 9, 10}, {2, 5, 5, 8}, {7, 10, 10, 13} and {3, 6, 6, 9} (respec-
tively {7, 8, 8, 9}, {1, 4, 4, 7}, {6, 9, 9, 12} and {2, 5, 5, 8}) lead to equa-
tions of the shape (21) with p ∈ {3, 5}. This completes the proof of
Theorem 1.4, if k = 15 (i.e. for k ≤ 22).

8.2. The cases k ∈ {23, 27, 35, 39}. A (reasonably) short calculation
reveals that for each of the N(P ) possibilities with P ∈ {11, 13, 17},
we can always find i and j satisfying (50) or (51). If P = 19 (so that
k = 39), then we are left with, up to symmetry, the following cases to
consider (where, as previously, p | n + ipd) :

case i3 i5 i7 i11 i13 i17 i19
(i) 1 0 3 6 1 9 6
(ii) 1 0 4 1 8 9 17
(iii) 0 4 3 0 7 8 16
(iv) 2 3 2 10 6 7 15

In the first of these {8, 11, 33, 36} leads immediately to an equation
of the shape (15) with β = 1. In the remaining three,

{2− i, 6− i, 29− i, 33− i}
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(for i = 0, 1 or 2, respectively) implies a solution to equation (15) with
(α, β) = (0, 1), if Π is odd. If, however, Π is even, the identity

{28− i, 29− i, 37− i, 38− i}

leads to equation (15) with α ≥ 2 and β = 1, unless 9 | n + (28− i)d.
In this case, the identity

{13− i, 14− i, 16− i, 17− i}

thus leads to equation (22) with p = 19. This completes the proof for
k = 39 (and hence for k ≤ 46).

8.3. The cases k ∈ {47, 59, 63, 75}. We verify via Maple that, for each
of the N(P ) possibilities with P ∈ {23, 29}, we can always find i and j
satisfying (50) or (51). For P = 31 (i.e. k = 63), there are again some
possibilities that elude our sieve (the computation is now becoming
rather more substantial). These 28 cases correspond, after symmetry,
to p | n + ipd for ip as follows :

case i3 i5 i7 i11 i13 i17 i19 i23 i29 i31
(i) 0 3 5 1 7 1 18 2 14 10
(ii) 2 2 4 0 6 0 17 1 13 9
(iii) 0 3 5 1 7 15 18 14 16 10
(iv) 2 2 4 0 6 14 17 13 15 9
(v) 1 1 3 8 5 15 11 4 8 23
(vi) 0 0 2 7 4 14 9 3 7 22
(vii) 2 4 1 6 3 13 8 2 6 21
(viii) 1 1 3 8 5 15 8 4 1 23
(ix) 0 3 5 10 7 14 13 6 10 25
(x) 2 2 4 9 6 13 12 5 9 24
(xi) 0 0 2 3 4 14 9 3 7 22
(xii) 2 4 1 2 3 13 8 2 6 21
(xiii) 0 3 5 10 7 14 10 6 3 25
(xiv) 2 2 4 9 6 13 9 5 2 24

Our arguments will prove similar in each case. From an initial identity
of the form {p, q, r, s}, we will conclude that 8 | n + id for some i
congruent, modulo 8, to p + 4, q + 4, r + 4 or s + 4. For each of these
possibilities, one of a collection of 4 (or 2) secondary identities of the
shape {p1, q1, q1, r1} then implies a nontrivial solution to an equation
of the form (21), contradicting Proposition 3.1. For example, in case
(i), {31, 32, 49, 50} implies the desired conclusion unless

max{ν2(n + id) : i = 31, 32, 49, 50} = 2.
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This hypothesis ensures that 8 | n + id for one of i = 3, 4, 5, 6 which,
with the identities {6, 11, 11, 16}, {11, 20, 20, 29}, {4, 13, 13, 22} and
{29, 30, 30, 31}, contradicts Proposition 3.1. For the remaining cases,
we choose our identities as follows :

case initial identity 8 | n + id
(i) {31, 32, 49, 50} i = 3, 4, 5, 6

(iii) {2, 4, 29, 31} i = 0, 2, 3, 5
(v), (viii) {12, 14, 60, 62} i = 4, 6
(ix), (xiii) {16, 17, 34, 35} i = 4, 5, 6, 7

(xi) {11, 13, 59, 61} i = 3, 5

and

case secondary identities
(i) {6, 11, 11, 16}, {11, 20, 20, 29}, {4, 13, 13, 22}, {29, 30, 30, 31}

(iii) {21, 24, 24, 27}, {27, 42, 42, 57}, {2, 11, 11, 20}, {4, 13, 13, 22}
(v), (viii) {13, 28, 28, 43}, {9, 22, 22, 35}
(ix), (xiii) {1, 4, 4, 7}, {16, 37, 37, 58}, {17, 22, 22, 27}, {2, 23, 23, 44}

(xi) {6, 19, 19, 32}, {8, 13, 13, 18}

In case (ii), (iv), (vi), (vii), (x), (xii) and (xiv), we argue as for (i),
(iii), (v), (ix) and (xi), only with {p, q, r, s} replaced, in each case, by
{p − i, q − i, r − i, s − i} for i = 1 or i = 2. This completes the proof
of Theorem 1.4, for 63 ≤ k ≤ 74.

To finish the proof of Theorem 1.4, it remains to handle the case
k = 75. In this situation, after lengthy calculations (carried out in
Maple on a Beowulf cluster at Simon Fraser University), we conclude
that there always exist i and j satisfying either (50) or (51). The code
utilized in this computation is available from the authors on request.

9. Concluding remarks

Presumably, the cases 2 ≤ l ≤ 5 in Theorem 1.2 may be sharpened
with a more careful combinatorial analysis, at least if (k, l) 6= (4, 2)
or (3, 3). As far as we can tell, the statement, for large prime values
of l, essentially reflects the limitations of our method. An extension
of Theorem 1.2 to larger values of k would be a reasonably routine
matter if one had available a full set of Galois conjugacy classes of
weight 2 cuspidal newforms at larger levels than currently present in
[38]. Proving an analog of Theorem 1.4 for larger k is also certainly
possible via the techniques described herein; to some degree, at this
stage, the problem is primarily a matter of combinatorics.
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Theory (G. Wüstholz, ed.), Cambridge University Press, Cambridge 2002, 325–
336.

[36] T.N. Shorey, Powers in arithmetic progression (II), in New Aspects of Analytic
Number Theory, Kyoto 2002, 202–214.

[37] T.N. Shorey and R. Tijdeman, Perfect powers in products of terms in an
arithmetic progression, Compositio Math. 75 (1990), 307–344.

[38] W. Stein, The Modular forms database, Available from the website
http://modular.fas.harvard.edu/Tables/, 2005.

[39] M. Stoll, On the height constant for curves of genus two, Acta Arith. 90 (1999),
183–201.

[40] M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta
Arith. 98 (2001), 245–277.

[41] M. Stoll, On the height constant for curves of genus two II, Acta Arith. 104
(2002), 165–182.

[42] R. Tijdeman, Diophantine equations and diophantine approximations, in Num-
ber Theory and Applications, Kluwer Acad. Press, 1989, 215–243.



POWERS FROM TERMS IN ARITHMETIC PROGRESSION 41

[43] A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. Math 141
(1995), 443–551.

Department of Mathematics, University of British Columbia, Van-
couver, B.C., V6T 1Z2 Canada

E-mail address: bennett@math.ubc.ca

Department of Mathematics, Simon Fraser University, Burnaby,
BC, V5A 1S6 Canada

E-mail address: nbruin@sfu.ca

Number Theory Research Group of the Hungarian Academy of Sci-
ences, Institute of Mathematics, University of Debrecen, P.O. Box
12, 4010 Debrecen, Hungary

E-mail address: gyory@math.klte.hu

Institute of Mathematics, University of Debrecen, P.O. Box 12,
4010 Debrecen, Hungary

E-mail address: hajdul@math.klte.hu


