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ON POWER VALUES OF POLYNOMIALS

A. BERCzES*, B. BRINDZA**AND L. HAJDU***

ABSTRACT. In this paper we give a new, generalized version of a result of Brindza,
Evertse and Gy0ry, concerning superelliptic equations.

Let f(x) € Zlz] be a polynomial of degree n and b be a nonzero integer. For
effective upper bounds obtained by Baker’s method for the exponent z in the equa-
tion

(1) f@)=b7, x,y,z€Z with |y| >1, z2>1

we refer to [T], [ST], [Tul], [Tu2], [ShT], [B1], [BEGy], [Bu.

For a polynomial P let M(P) denote the Mahler height of it (cf. [M]). The
purpose of this paper, which is related to a recent observation of Brindza on the
number of solutions of generalized Ramanujan - Nagell equations [B3], is to derive
a bound for z which is polynomial in M (f). For brevity write M = M (f).

Theorem. If f has at least two distinct zeros, then
z < M3 log® |20),

where ¢ is an effectively computable constant depending only on n.

Remarks. If f is an irreducible monic and b = 1 then this inequality was
proved by Brindza, Gy6ry and Evertse with different constants (see [BEGy], Th.
4). Moreover, if n > 2 and f is irreducible then a profound result of Gyéry (cf. [Gyl]
or [Gy2]) makes it possible to substitute cM3" by an effective constant depending
only on the discriminant of f.
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AUXILIARY RESULTS

To prove our Theorem, we need two lemmas. In what follows, for any non-zero
algebraic number «, h(«) and H(«) denotes the logarithmic height and the classical
(ordinary) height of «, respectively.

Lemma 1. Let K be an algebraic number field of degree n and denote by R and
r the regulator and the unit rank of K, respectively. There exists a fundamental
sytem of units €1, ...,e, for K so that

where ¢* is an effectively computable constant depending only on n.

Proof. This statement is a consequence of Lemma 1 in [BGy]. For other versions
of this result cf. [B2] or [H]. O

Lemma 2. Let ay,...,a, be nonzero algebraic numbers and let Ay,..., A, be
positive real numbers with A; > max{H («;),e} fori =1,...,n. Furthermore, let
b1,...,by, be rational integers with 0/1’1 ...al # 1 and suppose that B is a positive
real number satisfying B > ,max |b;| and B > e. Now we have

’
|afi1 ...Oé%” _ 1‘ > B¢ log A1...log A, ’

where ¢ is an effectively computable constant depending only onn and on the degree

of Qlau, ..., an) over Q.
Proof. This is Theorem 1.2 in [PW]. O

PROOF OF THE THEOREM

We have two cases to distinguish.

First we assume that f has an irreducible factor P € Z[x] of degree t > 2.
Let « be a zero of P, moreover, let R, h, D and r be the regulator, class number,
discriminant and unit rank of the field K = Q(«), respectively. In the sequel
c1,C2, ... will denote effectively computable positive constants depending only on
n. The well-known inequalities

hR < /[Dl(log| D))", (ct. e [L])

and

|D| < n"M(P)*""2 <n"M?""2  (cf. [M])
imply
(2) hR < ciM™.

Let a denote the leading coefficient of f and fi,..., 0, be the zeros of g(z) =
a1 f(£). Set
Ag) = T 8- 82

Bi#B;
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and write ¢ in the form g(x) = PI* (z)Py(z) where P, and P, are relatively prime
polynomials in Z[z] and P; is an irreducible monic of degree t; (actually Py(x) =
a'P(Z)). Let f1,..., 3 be the zeros of P and (z,y) be an arbitrary, however, fixed
solution to (1). The g.c.d. of the principal ideals (ax — 1) and (g(az)(az — BF1) ")
divides A™(g), therefore, there are integral ideals A, B, C in K so that

(3) Alax — (1) = BC" where w =

z
(Z7 kl)7

furthermore, r
max{Ni,q(A), Nk/o(B)} < la-b-Ag)[" .

Hence, by a well-known inequality (cf. for example [Gy3], Lemma 3) and by (2),
the ideals A" and B" have generators o and 3, respectively, with

max{[al,[3]} < exp(ca M (log M)" log |2b)).

The relation (3) can be written as

aaz — Br)" = efy"

where 7 is a generator of C" and ¢ is a unit. Let £1,...,&, be a fundamental system
of units for K satisfying Lemma 1. Then we can express € as € = palll ...elr where

p is a root of unity and we may assume that max |l;] < w (the remaining factors,
i<r

if any, are incorporated in 7).
If Jax| < M(g) + 1 then

2 <[yl < (2M(g) +1)"

and the Theorem is proved. Otherwise, |ax| > M(g) + 1 and |ax — 5;] > 1,
i=1,...,n implies

lax — Bi| < |a" 'by*|, i=1,...,n,
ja" by (" > max Jax — Bil" > [ [ [ [ el B ]

and

h
w

(Y] < "= bl % [yl T3] T[T
i=1
If w < nh then by 0.056 < R (cf. [Z]) we obtain w < 20nhR and
z < caM™ (log(2M))" L.
In case of w > nh

7] < Mp|= ly|"al [B] [ ][]
=1

and we get

log H <’(y2)) < cqlog |2b| M (log(2M))" log |y| -
Y
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We may assume that [az| > %|y|7. Indeed, otherwise max laz — Bi| > |y| = yields
<i<n

laz| > |y|* — M(g)

and the Theorem is proved. Supposing

1Bi — B _ B2 — Bl . .
> y 1<, <t i#]
lax — Bi| ~ |ax — (o]
we have .
[[ 1ol . 18012
I S AT
Bi#B;
e 162 B
2 — Ml _z
T S ylTE,
|az — Ba|

or else we can derive a bound for z better than stated in the Theorem. Avoiding

h
the trivial case (M) = 1, whenever $|y|= < |A(g)|™* we obtain

ax—fP2

()
axr — [

Finally, Lemma 2 yields

I1h "
0+ az — B h_lf L 1 L " pla 0 h_1>
p—y ") o\ 590 5o =

> exp (—c5 log [2b| M 3" 2 (log [2M[)*" ! log |y| log w)

ax —

1
o8 axr — [

< log (h

z
— ID < —§10g|y|.

and the comparision of the upper and lower bounds completes the proof (in the
first case).

In the easier second case all the zeros of g are integral. Let k; denote the
multiplicities of 3;, i =1, 2.

Repeating the argument one can have

Ui(ax - 51') = Uv:yfu

where w = =2~ and u;, v, y; € Z, lysl > 1, i=1,2.
To derive a bound for w from the equation

AyY — Byy =C

(A = ugv1, B =wujvy, C =wujuz(fB2 — (1)) one can apply Lemma 2 again, and we

have -
—— < ¢glog M log |2b] ,

log 2z

and the Theorem is proved. [
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