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THE RESOLUTION OF THE DIOPHANTINE

EQUATION x(x + d) . . . (x + (k − 1)d) = by2 FOR FIXED d

P. Filakovszky and L. Hajdu∗

Abstract. In this paper we provide an algorithm for the resolution of

the title equation, which works for any d. To illustrate the simplicity
of the method, we extend a result of Saradha by giving all solutions with

23 ≤ d ≤ 30, k ≥ 3, (x, d) = 1 and P (b) ≤ k, in positive integers x, d, k, b, y.

1. Introduction

A classical problem of Number Theory is to determine those finite arith-
metical progressions, for which the product of the terms yields a perfect
power, or an ’almost’ perfect one. Erdős and Selfridge in 1975 (cf. [2])
proved that the product of two or more consecutive positive integers is
never a perfect power, i.e. the equation

x(x + 1) . . . (x + k − 1) = yl

has no solutions with k, l ≥ 2 and x ≥ 1. There are many results in the
literature concerning the various generalizations of the above equation, see
e.g. the extensive survey papers [8], [9], [10], [11], or the very recent papers
[1], [4], [5], [6], [7], and the references given there.

Let P (b) denote the greatest prime factor of a positive integer b > 1,
and put P (1) = 1. In this paper we investigate the following equation:
(1)
x(x + d) . . . (x + (k − 1)d) = by2 with d > 1, k ≥ 3, (x, d) = 1, P (b) ≤ k,

in positive integers x, d, k, b, y. In [7] Saradha proved that equation (1)
has only the solutions

(x, d, k, b, y) = (2, 7, 3, 2, 12), (18, 7, 3, 1, 120), (64, 17, 3, 2, 504),

provided that d ≤ 22 holds. In fact she gave an algorithm for the resolution
of (1) for fixed values of d, and used her method to compute all solutions
with 1 < d < 23. The main steps of her method are the following. Put
C = (k − 1)2d2/4, and suppose first that for a solution (x, d, k, b, y) of (1)
x ≥ C holds. For such a solution Saradha derived an upper bound k0(d)
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for k, which varies between 18 and 314 as d ranges through the interval
[7, 22]. It is not guaranteed that her method provides an upper bound
k0(d) for an arbitrary value of d. Subsequently she proved that 4 ≤ k ≤ 6
if d = 7, 4 ≤ k ≤ 8 if d ∈ {11, 13, 17, 19}, respectively, and that (1) has no
solutions for other values of d with 1 < d < 23. The remaining cases were
verified by numerical calculations.

In [1] Brindza, Hajdu and Ruzsa proved the following result.

Theorem A. If (x, d, k, b, y) is a solution to (1) with k ≥ 8, then x < D,
where D = 4d4(log d)4.

This implies that we can take k0(d) = 8 if x ≥ D. This uniform bound
makes it possible, at least in principle, to resolve equation (1) for any
fixed d. This paper provides an algorithm to do so. We shall illustrate the
algorithm by determining all solutions of (1) with 23 ≤ d ≤ 30.

2. Result and description of the algorithm

The main steps of our method for the resolution of (1) with fixed d
are the following. First we provide a simple search algorithm to find the
solutions with small x. According to Theorem A we have k ≤ 7 for the
large solutions. We show that each such solution corresponds to a point
on one among 16 elliptic curves. The elliptic equations can be resolved by
a mathematical software package.

Theorem. Suppose that 23 ≤ d ≤ 30. The only solutions to equation (1)
are the following ones:
d = 23, k = 3: (x, b, y) = (2, 6, 20), (4, 6, 30), (75, 6, 385), (98, 2, 924),
(338, 3, 3952), (3675, 6, 91805),
d = 23, k = 4: (x, b, y) = (75, 6, 4620),
d = 24, k = 3: (x, b, y) = (1, 1, 35).

Remark. The above theorem provides a solution to (1) with k > 3,
namely (x, d, k, b, y) = (75, 23, 4, 6, 4620). This is not surprising, as it was
pointed out by F. Beukers that equation (1) has infinitely many solutions
with k = 4.

Proof of the Theorem. Suppose first that (x, d, k, b, y) is a solution to (1)
with 23 ≤ d ≤ 30 and x < D, where D is defined in Theorem A. Using the
estimate k < 4d(log d)2 due to Saradha [7], the left hand side of equation
(1) is bounded by a constant depending only on d. Hence after fixing d,
all solutions to (1) can be found by a simple search. However, as a huge
amount of computation is needed, it is worth to be more economical.

Let d be fixed. A positive integer a is called a bad number, if some
prime p with p ≥ 4d(log d)2 occurs in the prime factorization of a on
an odd exponent. Suppose that x + id is a bad number for some i with
0 ≤ i ≤ k−1, and choose a prime p with the above properties for a = x+id.
Then by Saradha’s result we have p > k. By the condition (x, d) = 1, there
is no other factor x + jd which is divisible by p. Hence p divides the left-
hand side on an odd exponent, which yields a contradiction with P (b) ≤ k.
This argument shows that no factor x + id is bad.
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We work with the residue classes (mod d) separately. Let m be a positive
integer with (m, d) = 1, m < d. We make a list L3 consisting of all those
positive integers x′ < D with x′ ≡ m (mod d) for which none of the
numbers x′, x′ + d, x′ + 2d is bad. Then we make a list L4 of all the
numbers x′ ∈ L3 with x′ + d ∈ L3. Subsequently we make a list L5 of
all the numbers x′ ∈ L4 with x′ + d ∈ L4 and so on. For 23 ≤ d ≤ 30
the process stops around L15. Observe that x′ ∈ Li if and only if none
of the numbers x′, x′ + d, . . . , x′ + (i − 1)d is bad. Hence every solution
(x, d, k, b, y) of (1) with x < D satisfies x ∈ Lk. Finally, for each number
x′ ∈ Lk we check if x′(x′ + d) . . . (x′ + (k − 1)d) has a square-free part
which has a greatest prime factor ≤ k, for all lists Lk. The numbers which
pass this last test provide all the solutions with x ≡ m (mod d). Finally
we take the union over all m to collect all solutions of (1) with x < D.

Now suppose that (x, d, k, b, y) is a solution to (1) with x ≥ D. Then,
by Theorem A, k ≤ 7. Write now x + id = aix

2
i (i = 0, . . . , k − 1) with

square-free ai’s and suppose that P (ai) > k for some i. By the assumption
(x, d) = 1 this implies P (b) > k, which is a contradiction. This shows that
P (ai) ≤ k. Hence we get

(2) x(x + d)(x + 2d) = cz2,

where c and z are positive integers with P (c) ≤ k, c square-free. More-
over, by the assumption (x, d) = 1 we get that (c, d) = 1 in (2). Hence c ∈
{1, 2, 3, 5, 6, 7, 10, 14,
15, 21, 30, 35, 42, 70, 105, 210}. Thus for each d we have to resolve 16 ellip-
tic equations of the form

u3 − c2d2u = v2 in u, v ∈ Z,

where u and v are given by u = c(x + d) and v = c2z, respectively. Using
the program package SIMATH (cf. [12]) these elliptic equations can be
resolved easily. For a detailed description of the algorithm implemented
in SIMATH, see e.g. [3].

The simple search method already yielded all the solutions mentioned
in the theorem. As in these solutions k ≤ 7, all of them, but no more were
also provided by the resolution of the elliptic equations. �
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their valuable remarks.

References

[1] B. Brindza, L. Hajdu and I. Z. Ruzsa, On the equation x(x+d) . . . (x+(k−1)d) =

by2, Glasgow Math. J. (to appear).
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Slovakia

Lajos Hajdu

University of Debrecen

Institute of Mathematics and Informatics
P.O. Box 12

H-4010 Debrecen

Hungary

E-mail address:
hajdul@math.klte.hu


