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Summary. In this 
hapter we present an algebrai
 theory of patterns whi
h 
anbe applied in dis
rete tomography for any dimension. We use that the di�eren
eof two su
h patterns yields a 
on�guration with vanishing line sums. We show byintrodu
ing generating polynomials and applying elementary properties of polyno-mials that su
h so-
alled swit
hing 
on�gurations form a linear spa
e. We give abasis of this linear spa
e in terms of the so-
alled swit
hing atom, the smallest non-trivial swit
hing 
on�guration. We do so both in 
ase that the material does notabsorb light and absorbs light homogeneously. In the former 
ase we also show thata 
on�guration 
an be 
onstru
ted with the same line sums as the original and withentries of about the same size, and we provide a formula for the number of lineardependen
ies between the line sums. In the �nal se
tion we deal with the 
ase thatthe transmitted light does not follow straight lines.1 Introdu
tionOne of the basi
 problems of dis
rete tomography is to re
onstru
t a fun
tionf : A ! f0; 1g where A is a �nite subset of Zn (n � 2), if the sums of thefun
tion values (the so-
alled X-rays) along all the lines in a �nite number ofdire
tions are given. A related problem on emission tomography is to re
on-stru
t f if it represents (radio-a
tive) material whi
h is emitting radiation. Iff(i) = 1 for some i 2 A, then there is a unit of radiating material at i, oth-erwise f(i) = 0 and there is no su
h material at i. The radiation is partiallyabsorbed by the medium, su
h that its intensity is redu
ed by a fa
tor � forea
h unit line segment in the given dire
tion (with some real number � � 1).As an illustration we in
lude an example. In Figure 1 the row sums off (the number of parti
les in ea
h row, from top to bottom) are given by[4; 4; 2; 5; 1; 2℄, while the 
olumn sums (the number of parti
les in ea
h 
ol-umn, from left to right) are [2; 3; 2; 1; 2; 3; 2; 3℄. Further, taking the line sumsof f in the dire
tion (1;�1), i.e. the sums of elements lying on the samelines of slope �1, we get (from the bottom-left 
orner to the top-right 
orner)
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      1 0 1 0 1 0 1 0
      0 1 0 1 0 1 0 1
      0 1 0 0 0 1 0 0
f :   1 1 1 0 1 0 1 0
      0 0 0 0 0 0 0 1
      0 0 0 0 0 1 0 1Fig. 1. The symbols � denote parti
les on a grid whi
h are represented in the table fon the right by 1's. In the 
lassi
al 
ase the light is going horizontally and verti
ally,resulting in row and 
olumn sums. In the emission 
ase the parti
les emit radiationwhi
h is partially absorbed by the material surrounding the parti
les. The intensityof the radiation is measured by dete
tors, denoted by [ signs.[0; 0; 1; 1; 2; 3; 1; 3; 3; 2; 0; 2; 0℄. Finally, suppose that the parti
les emit radia-tion in the dire
tions (�1; 0) and (0; 1). If � is the absorption 
oeÆ
ient inthese dire
tions, i.e. the absorption on a line segment of unit length is propor-tional with �, then the "absorption row sums " (measured at the dete
tors)from top to bottom are[��1 + ��3 + ��5 + ��7; ��2 + ��4 + ��6 + ��8; ��2 + ��6;��1 + ��2 + ��3 + ��5 + ��7; ��8; ��6 + ��8℄ ;and the "absorption 
olumn sums " from left to right are given by[��1 + ��4; ��2 + ��3 + ��4; ��1 + ��4; ��2; ��1 + ��4;��2 + ��3 + ��6; ��1 + ��4; ��2 + ��5 + ��6℄ :In the past de
ade 
onsiderable attention has been given to this type ofproblems, see e.g. [6, 7, 15, 16℄, and espe
ially [19℄ for a histori
al overview.Many papers investigate the problem under whi
h 
ir
umstan
es the line sumsdetermine the original set uniquely, see e.g. [1, 8, 9, 11, 25℄ for the non-absorption and [20, 21℄ for the absorption 
ase. However, in many 
ases thereare more than one 
on�guration yielding the same line sums. Observe that the"di�eren
e" of two 
on�gurations with equal line sums has zero line sums. Su
ha di�eren
e is 
alled a swit
hing 
on�guration. In the 
ase of row and 
olumnsums they were already studied by Ryser [23℄ in 1957. We refer to [17, 18℄for the 
ase of two general dire
tions and for the investigation of so-
alledswit
hing 
hains. Shliferstein and Chien [25℄ studied swit
hing 
on�gurationsin situations with more than two dire
tions. Swit
hing 
on�gurations play arole in solution methods of e.g. [1, 13, 17, 18, 20, 21, 25℄. Already Ryser [23℄showed in the 
ase of row and 
olumn sums that every swit
hing 
on�guration
an be 
omposed of simple swit
hing 
omponents
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rete Tomography 3��1 11 �1� :An algebrai
 theory on their stru
ture was developed by the authors [12, 14℄based on swit
hing 
omponents of minimal size, so-
alled swit
hing atoms. Inorder to re
onstru
t the original itself, one 
an use additional known propertiesof the original obje
t to favour some inverse images above the others, su
h as
onvexity (see e.g. [1℄) or 
onne
tedness (see e.g. [3, 4, 13℄). For an extensivestudy on the 
omputational 
omplexity of dis
rete tomographi
al problemssee [10℄.In this 
hapter we des
ribe a general algebrai
 framework for swit
hing
on�gurations.We 
olle
t and at 
ertain points generalize some of our previousresults. We show that our method 
an be applied to more general problemsthan only the 
lassi
al ones in dis
rete tomography. We mention that, thoughwe fo
us on Zn only, the results presented below 
an be generalized to anyintegral domain R su
h that R[x1; : : : ; xn℄ is a unique fa
torization domain.We re
ommend the book of Lang [22℄ as a general referen
e for algebra.To formulate the above problems in a pre
ise way, we introdu
e somede�nitions and notation whi
h we use throughout this 
hapter without anyfurther referen
e. Let n be a positive integer. The j-th 
oordinate of a pointv 2 Zn will be denoted by vj (j = 1; : : : ; n), that is v = (v1; : : : ; vn). Let mj(j = 1; : : : ; n) denote positive integers, and putA = fi 2 Zn : 0 � ij < mj for j = 1; : : : ; ng :Let d be a positive integer, and suppose that k� are equivalen
e relations onA for k = 1; : : : ; d. (For example, points are equivalent if they are on a line insome dire
tion 
hara
terized by k.) Let H(k)1 ; : : : ; H(k)tk denote the equivalen
e
lasses of k�. Finally, let %k : A ! R>0 be so-
alled weight fun
tions fork = 1; : : : ; d, and set % = dPk=1 %k. Now the above mentioned problems 
an beformulated in the following more general way.Problem 1. Let 
kl be given real numbers for k = 1; : : : ; d and l = 1; : : : ; tk.Constru
t a fun
tion g : A! f0; 1g (if it exists) su
h thatXi2H(k)l g(i)%k(i) = 
kl (k = 1; : : : d; l = 1; : : : tk) : (1)It is important to note that equation (1) is 
ertainly underdetermined withrespe
t to fun
tions g : A! Z. Moreover, the same may be true for solutionsg : A! f0; 1g. For example, the fun
tion g given by



4 L. Hajdu and R. Tijdemang : 0 1 1 0 1 0 1 01 0 0 0 1 1 0 10 1 0 0 0 1 0 01 1 1 1 0 0 0 10 0 0 0 0 0 1 00 0 0 0 0 1 0 1has the same row and 
olumn sums as f from Figure 1. Consequently, h :=f�g has zero row and 
olumn sums. Vi
e versa, having a fun
tion h : A! Zwith zero line sums, the line sums of g + h will 
oin
ide with those of g. Itturns out that the study of swit
hing 
on�gurations over Z is mu
h simplerthan that over f0; 1g. It is therefore important to note that the solutions toProblem 1 
an be 
hara
terized as the solutions of the following optimizationproblem over Z.Problem 2. Constru
t a fun
tion g : A! Z (if it exists) su
h that (1) holds,and Xi2A g(i)2%(i) is minimal :Remark 1. If g is a solution to Problem 1, then g is a solution to Problem 2.To show this, let f : A! Z be any other solution to (1). Then we haveXi2A g(i)2%(i) =Xi2A g(i)%(i) =Xi2A f(i)%(i) �Xi2A f(i)2%(i) :The idea used here, that a binary solution has small "length", has been usedin several papers, see e.g. [3, 4, 13℄.Remark 2. We also mention that when the equivalen
e relations k� mean thatthe 
orresponding points are on the same lines in given dire
tions, and theweight fun
tions %k are de�ned as 
ertain powers of some real numbers �k � 1then in view of Remark 1, our problems just redu
e to the 
lassi
al problemof emission tomography with absorption. In parti
ular, when �k = 1 (%k = 1for every k) we get ba
k the 
lassi
al problem on dis
rete tomography.As we indi
ated, we will study the stru
ture of the set of integral solutionsof equation (1). It turns out that in 
ase of line sums there exists a minimal
on�guration (the so-
alled swit
hing atom) su
h that every integral solutionof the homogenized equation (1) (i.e. with 
kl = 0) 
an be expressed as alinear 
ombination of shifts of one of the swit
hing atoms. For the 
ase of rowand 
olumn sums the swit
hing atom is��1 11 �1� :In this 
hapter we 
hara
terize and derive properties of swit
hing 
on�gura-tions.
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rete Tomography 5The stru
ture of this 
hapter is as follows. In the next se
tion we brie
youtline the main prin
iples of our method. In Se
tion 3 we give a 
ompletedes
ription of the set of integral solutions of (1) in 
ase of the 
lassi
al problemof dis
rete tomography, for arbitrary dimension (see Theorem 1). Theorem 2shows that if Problem 2 admits a solution, then a relatively small solution 
anbe found in polynomial time. In Se
tion 4 we derive similar results for the 
aseof emission tomography with absorption, also for any dimension n. Finally, inSe
tion 5 we 
onsider a new type of tomographi
al problems. Instead of lines,the X-rays (in Z2) are assumed to be parallel shifts of the graph of a fun
tionG : Z! Z. It turns out that our ma
hinery is appli
able in this 
ase, as well.2 The main prin
iples of the methodIn this se
tion we summarize the main prin
iples of our approa
h. Our methodrelies on the following four fundamental observations.1) If both fun
tions f; g : A ! Z are solutions to equation (1), then thedi�eren
e h := f � g is a solution to (1) with 
kl = 0 for all k; l, that is toXi2H(k)l h(i)%k(i) = 0 (k = 1; : : : d; l = 1; : : : tk) : (2)So to 
hara
terize the set of integral solutions of (1), it is suÆ
ient to knowone parti
ular solution g together with all the solutions of (2).2) Suppose that H1; : : : ; Ht is a partition of A. Let f : A ! Z andfl : Hl ! Z (l = 1; : : : ; t) be given fun
tions and write �f (x) = Pi2A f(i)xi forthe generating polynomial of f . Suppose that �fl(x) = Pi2Hl fl(i)xi vanishesfor l = 1; : : : ; t, and that �f (x) = tPl=1�fl(x). Then �f (x) vanishes.3) If �f (x) is divisible by polynomials P1(x); : : : ; Ps(x) 2 Z[x℄, then �f (x)is divisible by l
m(P1(x); : : : ; Ps(x)) in Z[x℄.4) Let f be a solution to equation (2). Then in the 
ases investigated inthis 
hapter we have �f (x) = P (x)Q(x), where P 
orresponds to a "minimal"solution M to (2), and Q indi
ates whi
h 
ombination of the translates of Myields f .To illustrate how these prin
iples work, we exhibit some examples.Example 1 (row sums). Let n = 2, A = f(i; j) : 0 � i < m1; 0 � j < m2gand Hl = f(i; l) : 0 � i < m1g for l = 0; : : : ;m2 � 1. Let f : A ! Z be agiven fun
tion. De�ne fl : Hl ! Z for l = 0; : : : ;m2 � 1 by fl(i; l) = f(i; l)(i = 0; : : : ;m1 � 1). Then�f (x; y) = m2�1Xl=0 �fl(x; y) and �fl(x; y) = yl m2�1Xl=0 fl(i; l)xi :



6 L. Hajdu and R. Tijdeman(i) Suppose m1�1Pi=0 f(i; l) = 0 for l = 0; : : : ;m2 � 1, so we have vanishingrow sums. Then�fl(1; y) = yl m1�1Xi=0 fl(i; l) = yl m1�1Xi=0 f(i; l) = 0 for l = 0; : : : ;m2 � 1 :Hen
e �fl(x; y) = X(i;j)2Hl fl(i; j)xiyj = yl m1�1Xi=0 fl(i; l)xiis divisible by x � 1 for l = 0; : : : ;m2 � 1. Thus �f (x; y) = m2�1Pl=0 �fl(x; y) isdivisible by x� 1.(ii) Let � 2 C , and suppose that m1�1Pi=0 f(i; l)�i = 0 for l = 0; : : : ;m2 � 1.Then�fl(�; y) = yl m1�1Xi=0 fl(i; l)�i = yl m1�1Xi=0 f(i; l)�i = 0 for l = 0; : : : ;m2 � 1 :Hen
e �fl(x; y) is divisible by x�� over C for l = 0; : : : ;m2�1. Then �f (x; y)is divisible by x� � over C . Sin
e �f (x; y) 2 Z[x; y℄, this implies that �f = 0if � is a trans
endental number and that �f (x; y) is divisible by the minimalde�ning polynomial of � if it is an algebrai
 number. The above argument 
anbe given for 
olumns, as well.Baru

i, Frosini and Rinaldi [2℄ treated the binary 
ase (i.e. only 
oeÆ-
ients 0 or 1) where the row sums are measured into both dire
tions for theabsorption 
oeÆ
ient � = (1+p5)=2. They proved that in that 
ase the rowsums determine the 
on�guration uniquely. Sin
e it is a good illustration of ourapproa
h we show how this 
on
lusion follows from the above 
onsiderations.Suppose there are two distin
t binary solutions. Then the polynomial f , de-�ned as the di�eren
e of both 
hara
teristi
 polynomials, has only 
oeÆ
ients1, 0 and �1 and vanishing row sums into both dire
tions. The polynomialm�1Pi=0 f(i; l)xi is therefore divisible by both the minimal polynomial x2 � x� 1of � and the minimal polynomial x2 + x � 1 of ��1 for all l. Hen
e bothm�1Pi=0 f(i; l)�i = 0 and m�1Pi=0 f(i; l)(��)i = 0. By addition and subtra
tion we�nd that both Pi even f(i; l)�i = 0 and Pi odd f(i; l)�i = 0. Sin
e the non-zero
oeÆ
ients have modulus 1 and �2 > 2, the �rst non-zero term of ea
h ex-pression ex
eeds the sum of the remaining terms. We 
on
lude that all the
oeÆ
ients of f are 0 so that the solution is unique.
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rete Tomography 7Example 2 (row and 
olumn sums). On 
ombining Example 1 with �1 to therow sums and with �2 to the 
olumn sums we obtain that if m1�1Pi=0 f(i; l)�i1 = 0for l = 0; : : : ;m2�1 and m2�1Pj=0 f(l; j)�j2 = 0 for l = 0; : : : ;m1�1 then �f = 0 if�1 or �2 is trans
endental and that otherwise �f is divisible by the produ
t ofthe minimal de�ning polynomials P1(x; 1) of �1 and P2(1; y) of �2 (as P1(x; 1)and P2(1; y) are 
oprime).Kuba and Nivat [20℄ studied the spe
ial 
ase of row and 
olumn sums for�1 = �2 = (1+p5)=2 (
f. Example 4 in Se
tion 4.1). The situation of havingdi�erent absorption 
oeÆ
ients in di�erent dire
tions was studied by Zopf andKuba [26℄ in another 
ontext.Example 3 (line sums). Let n and A be as in Example 1 and a; b 2 Z.Withoutloss of generality we may assume that a > 0. Suppose �rst that we have b � 0.Put Hl = f(i; j) : aj = bi+lg for l = 0; : : : ;m with m = (m1�1)b+(m2�1)a.Hen
e A is the disjoint union of the Hl. De�ne the fun
tions fl : Hl ! Z forthe above values of l by fl(i; j) = f(i; j) ((i; j) 2 Hl), where f : A ! Z is agiven fun
tion. Then�f (x; y) = mXl=0 �fl(x; y) where �fl(x; y) = X(i;j)2Hl fl(i; j)xiyj :Let � 2 C , and suppose that P(i;j)2Hl fl(i; j)�i = 0 for l = 0; : : : ;m. Then�fl(x; y) = X(i;j)2Hl fl(i; j)xiy(bi+l)=a = yl=a X(i;j)2Hl fl(i; j)(xyb=a)i = 0for x = �y�b=a and l = 0; : : : ;m. It follows that �f (�y�b=a; y) � 0. Equiv-alently, �f (�y�b; ya) = 0. We 
on
lude that �f = 0 if � is trans
enden-tal and that otherwise �f is divisible by the minimal de�ning polynomial ofxa=d � �a=dy�b=d where d = g
d(a; b) if � is algebrai
. Similarly we �nd in
ase b > 0 that �f is divisible by the minimal polynomial of xa=dyb=d � �a=d.Combine Example 1 with � = �1 and Example 3 with a = 1, b = �1, � =�p21 . Suppose m1�1Pi=0 f(i; l)�i1 = 0 for l = 0; : : : ;m2�1 and Pj=�i+l f(i; j)�p2i1 =0 for l = 0; : : : ;m1+m2� 2. Then �f is divisible by both polynomials x��1and x � �p21 y over C . By the theorem of Gelfond-S
hneider we know that if�1 6= 0; 1, then �p21 is trans
endental if �1 is algebrai
. Hen
e either �1 = 0and �f is divisible by x, or �1 = 1 and �f is divisible by (x � 1)(x � y), or�f = 0.Combine Example 3 with a = 1, b = �1, � 6= 0 arbitrary and Example3 with a = b = 1, and ��1 in pla
e of �. Suppose Pj=�i+l f(i; j)�i = 0 for



8 L. Hajdu and R. Tijdemanl = 0; : : : ;m1 +m2 � 2 and Pj=i+l f(i; j)��i = 0 for l = �m1 + 1; : : : ;m2 � 1.Then �f is divisible by both polynomials x��y and xy���1 over C . Hen
e �fis identi
ally zero if � is trans
endental. If � is algebrai
, then �f is divisibleby the produ
t of the minimal polynomials of x� �y and xy � ��1.Finally, 
ombine Example 3 with a = 1, b = �1, � 6= 0 arbitrary andExample 3 with a = 1, b = �1, ��1 in pla
e of �. (The latter 
ondi-tion is equivalent with a = �1, b = 1, absorption 
oeÆ
ient �.) SupposePj=�i+l f(i; j)�i = Pj=�i+l f(i; j)��i = 0 for l = 0; : : : ;m1 + m2 � 2. Then�f = 0 if � is trans
endental. If � is algebrai
 then �f (x; y) is divisible bythe minimal polynomial of xy � �, and, if the minimal polynomial of � isnon-re
ipro
al, even by the produ
t of the minimal polynomials of x��y andx� ��1y.3 Dis
rete tomography in nDIn [12℄ we developed a theory on swit
hing 
on�gurations in 
ase n = 2. Inthis se
tion we generalize it to arbitrary n.3.1 Some notationLet a 2 Zn with g
d(a1; : : : ; an) = 1, su
h that a 6= 0, and for the smallestj with aj 6= 0 we have aj > 0. We 
all a a dire
tion. By lines with dire
tiona we mean lines of the form b + ta (b 2 Rn , t 2 R) in Rn . Let A be as inthe Introdu
tion. By the help of a dire
tion a we 
an de�ne an equivalen
erelation on A as follows. We 
all two elements of A equivalent if they are onthe same line with dire
tion a. If g : A ! Q is a fun
tion, then the linesum of g along the line T = b + ta is de�ned as Pi2A\T g(i). Note that theline sums are in fa
t the "
lass sums" from (1), 
orresponding to the abovede�ned equivalen
e.We will work with polynomials F 2 Q[x1 ; : : : ; xn℄. For brevity we writex = (x1; : : : ; xn) and xi = nQj=1 xijj (i 2 Zn). The generating polynomial of afun
tion g : A! Q is de�ned as�g(x) =Xi2A g(i)xi :A set S = fakgdk=1 of dire
tions is 
alled valid for A, if dPk=1 jakj j < mj forany j = 1; : : : ; n. Suppose that S is a valid set of dire
tions for A. For a 2 Sput fa(x) = (xa � 1) Qaj<0x�ajj and set FS(x) = dQk=1 fak (x). Let
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rete Tomography 9U = fu : 0 � uj < mj � dXk=1 jakj j (j = 1; : : : ; n)g :For u 2 U put F(u;S)(x) = xuFS(x) and de�ne the fun
tions M(u;S) : A! Zby M(u;S)(i) = 
oe�(xi) in F(u;S)(x) for i 2 A :The M(u;S)'s are 
alled the swit
hing atoms 
orresponding to the dire
tionset S. By the minimal 
orner of the swit
hing atom M(0;S) we mean theelement i� 2 A for whi
h M(0;S)(i�) 6= 0, but M(0;S)(i) = 0, whenever i 2 Alexi
ographi
ally pre
edes i�. That is, i� is lexi
ographi
ally the �rst elementof A for whi
h the fun
tion value of M(0;S) is non-zero. It follows from thede�nitions of fa and FS that M(0;S)(i�) = �1 :Sin
e it 
orresponds with the minimal 
orner of M(0;S), for every u 2 U wede�ne the minimal 
orner of M(u;S) as i� + u. Again, the minimal 
orner ofM(u;S) is lexi
ographi
ally the �rst element of A for whi
h the fun
tion valueof M(u;S) is non-zero, and we also haveM(u;S)(i� + u) = �1 :It is 
lear that a fun
tion g de�ned on A 
an be 
onsidered as a ve
tor (anQj=1mj-tuple). If we want to emphasize this, we write g instead of g. We alwaysassume that the entries of these ve
tors are arranged a

ording to elements ofA in lexi
ographi
al order. The length of g (or g) is jgj = jgj =rPi2A g(i)2.3.2 The stru
ture of the swit
hing 
on�gurationsOur main result shows that every swit
hing 
on�guration is a linear 
ombi-nation of translates of the swit
hing atom M(0;S).Theorem 1. Let A be as before, S = fakgdk=1 a valid set of dire
tions for A,and let R be one of Z or Q. Then any fun
tion g : A ! R with zero linesums along the lines 
orresponding to S 
an be uniquely written in the formg = Xu2U 
uM(u;S)with some 
u 2 R (u 2 U). Moreover, every su
h fun
tion g has zero linesums along the lines 
orresponding to S.Remark 3. As one 
an easily see from the proofs, if S is not valid for A, thenthe only fun
tion having all its line sums zero is the identi
ally zero fun
tionon A.



10 L. Hajdu and R. TijdemanTo prove the theorem, we need the following lemma.Lemma 1. Assume that a is a valid dire
tion for A, and let R be one of Zor Q. Then a fun
tion g : A ! R has zero line sums along the lines withdire
tion a if and only if fa(x) divides �g(x) in R[x℄.Proof. We give the proof only when aj > 0 (j = 1; : : : ; n), the proof is similarin all the other 
ases. Put B = fb : : b 2 A; b � a 62 Ag, and for b 2 B setIb = maxft 2 Z : b+ ta 2 Ag. Observe that we 
an write�g(x) =Xb2B IbXt=0 g(b+ ta)xb+ta =Xb2B xb IbXt=0 g(b+ ta)xta == (xa � 1)Xb2B xb IbXt=0 g(b+ ta) t�1Xs=0 xsa +Xb2B xb IbXt=0 g(b+ ta) :As fa(x) = xa � 1 and the line sums of g in the dire
tion a are given byIbPt=0 g(b+ ta), the lemma follows. utProof (of Theorem 1). By de�nition, for every u 2 U the fun
tion F(u;S) isdivisible by fak for any k with 1 � k � d. Hen
e by Lemma 1, M(u;S) haszero line sums along all the lines 
orresponding to S. This proves the se
ondstatement of Theorem 1.Let nowH = ff : A! R j f has zero line sums 
orresponding to Sg :We �rst prove that the swit
hing atoms generate H . Suppose that g 2 H .Lemma 3 (from Se
tion 4) implies that the polynomials fak(x) are pairwisenon-asso
iated irredu
ible elements of the unique fa
torization domain R[x℄.Hen
e by Lemma 1 we obtainFS(x) j �g(x) in R[x℄ :Hen
e there exists a polynomial h(x) = Pu2U 
uxu in R[x℄ su
h that �g(x) =h(x)FS(x). We rewrite this equation as�g(x) = Xu2U 
uF(u;S)(x) :Now by the de�nitions of �g(x) and the swit
hing atoms M(u;S) we immedi-ately obtain g = Xu2U 
uM(u;S) ;
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 Dis
rete Tomography 11whi
h proves that the fun
tions M(u;S) generate H .Suppose now that for some 
oeÆ
ients lu 2 R (u 2 U) we haveXu2U luM(u;S)(i) = 0 for all i 2 A :By the de�nitions of the swit
hing atoms, at the minimal 
orner of M(0;S) allthe other swit
hing atoms vanish. This immediately implies l0 = 0. Runningthrough the swit
hing atoms M(u;S) with u 2 U in in
reasing lexi
ographi
alorder, we 
on
lude that all the 
oeÆ
ients lu are zero. This shows that theswit
hing atoms are linearly independent, whi
h 
ompletes the proof of thetheorem. utThe following result is a 
onsequen
e of Theorem 1.Corollary 1. Let A, S and R be as in Theorem 1. Let C be the set of thoseelements of A whi
h are the minimal 
orners of the swit
hing atoms. Then forany f : A ! R and for any pres
ribed values from R for the elements of C,there exists a unique g : A! R having the pres
ribed values at the elementsof C and having the same line sums as f along the lines 
orresponding to S.Proof. As every swit
hing atom takes value �1 at its minimal 
orner, weobtain that there are unique 
oeÆ
ients 
u 2 R (u 2 U) su
h thatg := f +Xu2U 
uM(u;S)has the pres
ribed values at the element of C. By the se
ond statement ofTheorem 1 the line sums of f and g 
orresponding to S 
oin
ide. ut3.3 Existen
e of "small" solutionsWe provide a polynomial-time algorithm for �nding an approximation to fhaving the required line sums. We �rst 
ompute a fun
tion q : A! Q havingthe same line sums as f in the given dire
tions by solving a system of linearequations. Subsequently we use the stru
ture of swit
hing 
on�gurations to�nd a fun
tion g : A ! Z whi
h is not far from q and f . The general resultis given in Theorem 2. It follows that in 
ase when f has f0; 1g values thealgorithm provides a solution g : A! Z satisfying (1) with jg(i)j � 2d�1+1 onaverage, where d is the number of dire
tions involved. The fun
tion obtainedby repla
ing all fun
tion values of q whi
h are greater than 1=2 by 1 and allothers by 0 provides a good �rst approximation to f in pra
ti
e. In [13℄ analgorithm is given, relying on this prin
iple.Theorem 2. Let A, d and S be as in Theorem 1. Let all the line sums in thedire
tions of S of some unknown fun
tion f : A ! Z be given. Then there



12 L. Hajdu and R. Tijdemanexists an algorithm whi
h is polynomial in maxj=1;:::;nfmjg, providing a fun
tiong : A ! Z su
h that f and g have the same line sums 
orresponding to S,moreover jgj � jf j+ 2d�1vuut nYj=1mj : (3)Proof. Put Nj = dPk=1 jakj j for j = 1; : : : ; n. First, 
ompute some fun
tionq : A ! Q having the same line sums as f . It 
an be done by solving thesystem of linear equations provided by the line sums. This step is known tobe polynomial in maxj=1;:::;nfmjg (see e.g. [5℄, p. 48). We 
onstru
t a fun
tions : A ! Z with the same line sums as f . We follow the pro
edure used inthe se
ond part of the proof of Theorem 1 and start with the minimal 
orneri� of M(0;S). With an appropriate rational 
oeÆ
ient r0 with jr0j � 1=2, thevalue (q + r0M(0;S))(i�) will be an integer. We now 
ontinue in in
reasinglexi
ographi
al order in i and 
hoose 
oeÆ
ients ri subje
t to jrij � 1=2 su
hthat the value of (q+Pi0�i ri0M(i0;S))(i) is an integer. (Here� under theP refersto the lexi
ographi
al ordering.) Observe that the values at i0 (i0 < i) are not
hanged in the i-th step. After exe
uting this pro
edure for the whole set Cof the minimal 
orners of the swit
hing atoms, we obtain a fun
tion s havinginteger values on C. By a similar pro
ess (taking the swit
hing atoms one-by-one, in in
reasing lexi
ographi
al order) we get that there exist integers tu(u 2 U) su
h that the values of f+ Pu2U tuM(u;S) and s 
oin
ide on C. As thesefun
tions have the same line sums 
orresponding to S, applying Corollary 1with R = Q, we 
on
lude that they are equal, hen
e s takes integer valueson the whole set A. Clearly, this 
onstru
tion of s needs only a polynomialnumber of steps in maxj=1;:::;nfmjg.Consider now all the fun
tions as ve
tors ( nQj=1mj-tuples), and solve overQ the following system of linear equations(s;M(v;S)) = Xu2U 
�u(M(u;S);M(v;S))in 
�u, where (:; :) denotes the inner produ
t of ve
tors and v runs throughthe elements of U . As the swit
hing atoms are linearly independent a

ordingto Theorem 1, this system of equations has a unique solution. This 
an be
omputed again in time whi
h is polynomial in maxj=1;:::;nfmjg. Put g = s �Pu2U jj
�ujjM(u;S), where jj�jj denotes the nearest integer to �. Observe thats � Pu2U 
�uM(u;S) is just the proje
tion of f (but also of q and s) onto the
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omplement of the linear subspa
e generated by the swit
hingatoms. This implies jgj � jf j+ ������Xu2U(
�u � jj
�ujj)M(u;S)������ :There are at most 2d swit
hing atoms whi
h 
ontribute to the value of any�xed point, ea
h with a 
ontribution at most 1=2 in absolute value in theabove equation. Thus we may 
on
lude jgj � jf j+ 2d�1s nQj=1mj .Finally, noti
e that all the steps of the above algorithm are polynomial inmaxj=1;:::;nfmjg. Thus the proof of Theorem 2 is 
omplete. utRemark 4. We mention that if we know that Problem 1 admits a solution,i.e. f has f0; 1g values in the above theorem, then jf j = s tkPl=1 
kl (for anyk = 1; : : : ; d), when
e we get jgj � (2d�1 + 1)s nQj=1mj . Moreover, as noted inthe proof of Theorem 2 we 
an repla
e jf j with jqj (or with jsj) in the upperbound (3). Therefore an upper bound for jgj 
an be given whi
h only dependson the line sums and the dire
tions.3.4 Dependen
ies among the line sumsObviously, the sum of all row sums of a fun
tion f : A ! Z 
oin
ides withthe sum of all 
olumn sums of f . In this subse
tion we give a simple formulafor the number of dependen
ies among the line sums 
orresponding to S.Let A, S and FS(x) be as above, and write Nj for the degree of FS inxj (j = 1; : : : ; n). Then by Theorem 1 the swit
hing atoms form a basisof a module of dimension nQj=1(mj � Nj) over Z. Suppose that LS denotesthe number of line sums for A 
orresponding to the dire
tions in S, and letDS denote the number of dependen
ies among these line sums. Then as thenumber of unknowns is nQj=1mj , elementary linear algebra tells us thatDS = LS + nYj=1(mj �Nj)� nYj=1mj :In parti
ular, if n = 2 then there are akm2+jbkjm1�akjbkj line sums belongingto a dire
tion (ak; bk) 2 S. Hen
e in this 
ase as ak � 0 we have



14 L. Hajdu and R. TijdemanDS = m2 dXk=1 ak +m1 dXk=1 jbkj � dXk=1 akjbkj++ m1 � dXk=1 ak! m2 � dXk=1 jbkj!�m1m2 = dXk=1 ak dXk=1 jbkj � dXk=1 akjbkj :4 Emission tomography with absorptionIn this 
hapter we generalize the results from [14℄ whi
h were presented fordimension 2 to the 
ase of general dimension.To model the physi
al ba
kground of emission tomography with absorp-tion, 
onsider a ray (su
h as light or X-ray) transmitting through homogeneousmaterial. Let I0 and I denote the initial and the dete
ted intensities of theray. Then I = I0 � e��x ;where � � 0 denotes the absorption 
oeÆ
ient of the material, and x is thelength of the path of the ray in the material. We put � = e�, and we 
all � theexponential absorption 
oeÆ
ient. We mention that as � � 0, we have � � 1.Note that by the absorption we have to work with dire
ted line sums whi
h donot only depend on the line, but also on the dire
tion of the radiation throughthat line.We further assume that g represents (radio-a
tive) material whi
h is emit-ting radiation. If g(i) = 1, then there is a unit of radiating material at i,otherwise g(i) = 0 and there is no su
h material at i.As we have absorption, we atta
h some absorption 
oeÆ
ient to ea
h di-re
tion. Hen
e we slightly adjust our previous notation. Let d be a positiveinteger, and let S = f(ak; �k) : k = 1; : : : ; dg be a set, where ak 2 Zn withg
d(ak1; : : : ; akn) = 1 for k = 1; : : : ; d, and for the real numbers �k we have�k � 1. For k = 1; : : : ; d put Bk = fb 2 A : b+ ak =2 Ag, and for any i 2 A lets(i;k) denote the integer for whi
h i = b� (s(i;k) � 1)ak with some b 2 Bk. Bythe dire
ted absorption line sum of g along the line T = b�tak (b 2 Bk; t 2 Z)we mean Xi2T\A g(i)��s(i;k)k :(Here there is a hidden assumption on the shape of the absorbing material,but this is irrelevant for the swit
hing 
on�gurations.) In Figure 1 in theIntrodu
tion we illustrated how dire
ted absorption line sums are interpreted.Let i1 k� i2 for i1; i2 2 A and k = 1; : : : ; d if and only if i1 � i2 = tak forsome t 2 Z, and write H(k)1 ; : : : ; H(k)tk for the equivalen
e 
lasses of k�. Takingarbitrary real numbers 
kl (k = 1; : : : ; d; l = 1; : : : ; tk), equation (1) is justgiven by
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rete Tomography 15Xi2H(k)l g(i)��s(i;k)k = 
kl (k = 1; : : : d; l = 1; : : : tk) : (4)Thus in this 
ase Problem 1 is the standard problem in emission tomographywith absorption. (See also the DA2D(�) re
onstru
tion problem in [20℄ for thetwo dimensional 
ase.)If the absorption is independent of the dire
tion, then �k = e�jaj, sin
e jajis the distan
e between 
onse
utive latti
e points on the line b� ta. However,we prefer to leave the possibility open that the absorption 
oeÆ
ient dependson the dire
tion in whi
h the medium is passed. Our de�nition of s(i;k) makesit possible to distinguish between two opposite dire
tions. Thus b � ta andb� t(�a) represent the same line, but opposite dire
tions.Finally, we mention that in 
ase when �k = 1 (k = 1; : : : ; d) the problemredu
es to the 
lassi
al problem of dis
rete tomography.4.1 The stru
ture of the swit
hing 
on�gurationsIn this se
tion we give a full des
ription of the set of solutions g : A ! Zto (4). First we 
onsider the 
ase when 
kl = 0 for all k = 1; : : : ; d andl = 1; : : : ; tk, that is when all the dire
ted absorption line sums of g are zero.For this purpose we need some further notation.First we note that if any of the �k-s is trans
endental, then f is uniquelydetermined by its dire
ted absorption line sums in the 
orresponding dire
tionak. Hen
e from this point on we assume that all the exponential absorption
oeÆ
ients are algebrai
.Let a 2 Zn be a dire
tion (i.e. g
d(a1; : : : ; an) = 1). Let � be a non-zeroalgebrai
 number of degree r, and let P�(z) be the de�ning polynomial of �having 
oprime integral 
oeÆ
ients. Putf(a;�)(x) = P�(xa) Yaj<0x�rajj :Hen
e f(a;�)(x) 2 Z[x℄.In the proof we shall make use of a fundamental 
orresponden
e betweenfun
tions g : A! Z and polynomials in n variables. Namely, to su
h a fun
tiong we atta
h the polynomial �g(x) =Xi2A g(i)xi :Then into dire
tion a the line sums of g are the 
oeÆ
ients of �g(x) "modulo"f(a;�). The polynomials are pairwise 
oprime ex
ept for some well-des
ribedspe
ial 
ases, when they are 
onjugate. Therefore the polynomial FS de�nedbelow represents the least 
ommon multiple of the polynomials f(ak;�k). LetS = f(ak; �k) : k = 1; : : : ; dg be a set, where for ea
h k, ak is a dire
tion and�k is a real algebrai
 number with �k � 1 of degree rk. Two elements (ak; �k)
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; �
) of S are equivalent, if ak = a
 and �k and �
 are algebrai
ally
onjugated elements, or ak = �a
 and �k and 1=�
 are algebrai
ally 
onju-gated elements. Let S� be a subset of S 
ontaining exa
tly one element of Sfrom ea
h 
lass of this equivalen
e relation. PutFS(x) = Y(ak;�k)2S� f(ak;�k)(x) :We say that S is valid for A, if Nj := degxj (FS(x)) < mj (j = 1; : : : ; n).Put U = fu 2 Zn : 0 � uj < mj � Nj (j = 1; : : : ; n)g. For u 2 U setF(u;S)(x) = xuFS(x), and de�ne the fun
tions M(u;S) : A! Z byM(u;S)(i) = 
oe�(xi) in F(u;S)(x) for i 2 A :The fun
tions M(u;S) are 
alled the swit
hing atoms 
orresponding to the setS. By the minimal 
orner of the swit
hing atom M(0;S) we mean the elementi� whi
h is lexi
ographi
ally the �rst element of A for whi
h the fun
tion valueof M(0;S) is non-zero. The minimal 
orner of M(u;S) is i� + u.Our main result in this se
tion shows that swit
hing 
on�gurations 
an beobtained as 
ombinations of shifts of the swit
hing atom M(0;S) also in the
ase of emission tomography.Theorem 3. Let A, S and M(u;S) be as above, with the assumption that S isvalid for A. Then any fun
tion g : A ! Z with zero dire
ted absorption linesums 
orresponding to the pairs (ak; �k) of S 
an be uniquely written in theform g = Xu2U 
uM(u;S)with 
u 2 Z (u 2 U). Moreover, every su
h fun
tion g has zero dire
tedabsorption line sums 
orresponding to the elements of S.Remark 5. Note that if S is not valid for A, then there is no non-trivial fhaving zero dire
ted absorption line sums in the dire
tions given by S. Thisfa
t simply follows from the proof of Theorem 3.As an illustration, we give two examples (partly from [14℄).Example 4. First we 
onsider a similar situation as Kuba and Nivat do in[20℄, however, in Z3. Let S = f((�1; 0; 0); �); ((0; 1; 0); �); ((0; 0; 1); �)g, where� = (1 +p5)=2. Then we have P�(z) = z2 � z � 1 andf((�1;0;0);�)(x1; x2; x3) = �x21 � x1 + 1; f((0;1;0);�)(x1; x2; x3) = x22 � x2 � 1and f((0;0;1);�)(x1; x2; x3) = x23 � x3 � 1 :Thus we obtain
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rete Tomography 17FS(x1; x2; x3) = (x21x22�x21x2�x21+x1x22�x1x2�x1�x22+x2+1)(1+x3�x23)and N1 = N2 = N3 = 2. So if A is of type m1�m2�m3 with m1;m2;m3 � 3,then S is a valid set for A. Now M(0;S) is given by0 0 0 0 : : : 0... ... ... ... ... ...0 0 0 0 : : : 0�1 1 1 0 : : : 01 �1 �1 0 : : : 01 �1 �1 0 : : : 0
0 0 0 0 : : : 0... ... ... ... ... ...0 0 0 0 : : : 0�1 1 1 0 : : : 01 �1 �1 0 : : : 01 �1 �1 0 : : : 0

0 0 0 0 : : : 0... ... ... ... ... ...0 0 0 0 : : : 01 �1 �1 0 : : : 0�1 1 1 0 : : : 0�1 1 1 0 : : : 0where these tables represent the values ofM(0;S) on the "sli
es" 
orrespondingto the 
oeÆ
ients of 1; x3; x23 in FS , respe
tively. (All the other values arezero.) The swit
hing atomsM(u;S) (u 2 U) form a basis of the set of fun
tionsg : A! Z having zero line sums 
orresponding to the three elements of S.Example 5. Now we 
onsider an example for n = 2 where both opposite di-re
tions and di�erent exponential absorption 
oeÆ
ients o

ur. LetS = f((�1; 0); �); ((1; 0); �); ((0;�1); 
); ((0; 1); Æ)gwith � = (1+p5)=2, 
 = 2+p2 and Æ = 
=2. We obtain P�(z) = z2� z� 1,P
(z) = z2 � 4z + 2 and PÆ(z) = 2z2 � 4z + 1. We havef((�1;0);�)(x1; x2) = �x21 � x1 + 1; f((1;0);�)(x1; x2) = x21 � x1 � 1and f((0;�1);
)(x1; x2) = f((0;1);Æ)(x1; x2) = 2x22 � 4x2 + 1 ;as 
 and 1=Æ are asso
iated elements. We getFS(x1; x2) = �2x41x22 + 4x41x2 � x41 + 6x21x22 � 12x21x2 + 3x21 � 2x22 + 4x2 � 1and N1 = 4, N2 = 2. So if A is of type m1 �m2 with m1 � 5 and m2 � 3,then S is a valid set for A. Now M(0;S) is given by0 0 0 0 0 0 : : : 0... ... ... ... ... ... ... ...0 0 0 0 0 0 : : : 0�2 0 6 0 �2 0 : : : 04 0 �12 0 4 0 : : : 0�1 0 3 0 �1 0 : : : 0and the swit
hing atoms M(u;S) (u 2 U) form a basis of the set of fun
tionsg : A! Z having zero line sums 
orresponding to the four elements of S.



18 L. Hajdu and R. TijdemanTo prove Theorem 3, we need several lemmas. To keep this expositionself-
ontained, we in
lude their proofs. Lemma 2 shows the 
orresponden
ebetween zero line sums and division by polynomials. Note that line sums offun
tions A! L are de�ned in the obvious way.Lemma 2. Let A be as before, a a dire
tion, and � a non-zero algebrai
 num-ber. Let L be some �eld 
ontaining the splitting �eld of P�(z). Put~f(a;�)(x) = (xa � �) Yaj<0x�ajj :Then a fun
tion g : A! L has zero line sums 
orresponding to the pair (a; �)if and only if ~f(a;�)(x) divides �g(x) in L[x℄.Proof. We prove the lemma only with aj > 0 (j = 1; : : : ; n), as the other 
ases
an be treated similarly.Put B = fb 2 A : b+ a =2 Ag and let Ib be the number of the points of Aon the line b� ta (b 2 B; t 2 Z). Observe that we may write�g(x) =Xb2B Ib�1Xs=0 g(b� sa)xb�sa =Xb2B xb Ib�1Xs=0 g(b� sa)x�sa :If xa�� divides �g(x) in L[x℄, then after substituting x1  �1=a1 nQj=2 xaj=a1jthe polynomial �g(x) be
omes identi
ally zero. This yields that Ib�1Ps=0 g(b �sa)��s vanishes for every b 2 B, hen
e g has zero absorption line sums 
or-responding to (a; �). This proves the `if' part of the statement.To prove the `only if' part, suppose that all the line sumsIb�1Xs=0 g(b� sa)��s�1 = ��Ib Ib�1Xs=0 g(b� (Ib � s� 1)a)�s (b 2 B)of g 
orresponding to (a; �) vanish. This means that � is a root of the polyno-mial Qb(z) := Ib�1Ps=0 g(b� (Ib � s� 1)a)zs for ea
h b 2 B. Thus for every b 2 Bthe polynomial Qb(xa) is divisible by xa � � over L. Hen
e xa � � divides�g(x) = Pb2B xb+(1�Ib)aQb(xa) in L[x℄, and the lemma follows. utLemma 3. Using the notation of Lemma 2, write r for the degree and �(
)(1 � 
 � r) for the 
onjugates of �. Then the polynomials ~f(a;�(
))(x) (1 �
 � r) de�ned in Lemma 2 are pairwise non-asso
iated irredu
ible elementsin L[x℄.
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rete Tomography 19Proof. As g
d(a1; : : : ; an) = 1, the irredu
ibility of these polynomials is asimple 
onsequen
e of Corollary 2 of [24℄ p. 103. The statement that thepolynomials are pairwise non-asso
iated, is trivial. utCorollary 2. The polynomials P�(xa) Qaj<0x�rajj are irredu
ible in Z[x℄.Proof. We prove the statement only for aj > 0 (j = 1; : : : ; n), the other 
asesare similar.Let �(
) (1 � 
 � r) be the 
onjugates of �, and let L be the splitting �eldof P� over Q. Then, in view ofP�(xa) = 
0 rY
=1(xa � �(
))where 
0 is the leading 
oeÆ
ient of P� , the statement immediately followsfrom Lemma 3. utIn the next lemma we show that the divisibility property of �g over L inLemma 2 implies a stronger property over Z.Lemma 4. Let a and � be as in Lemma 2. Using the previous notation, afun
tion g : A! Z has zero line sums 
orresponding to the pair (a; �) if andonly if P�(xa) Qaj<0x�rajj divides �g(x) in Z[x℄.Proof. The `if' part of the statement easily follows from Lemma 2. We provethe `only if' part only for aj > 0 (j = 1; : : : ; n), the other 
ases 
an be handledsimilarly. In this 
ase observe that by Lemma 2, xa�� divides �g(x) over any�eld L whi
h 
ontains the splitting �eld of P�(z). However, by 
onjugation,for every 
onjugate �(
) of �, xa � �(
) also divides �g(x) in L[x℄. By Lemma3 this assertion immediately implies the statement. utIt follows from Corollary 2 and the following Lemma 5 that the divisionpolynomials in non-parallel dire
tions are 
oprime, and in parallel dire
tionsare 
oprime or asso
iated.Lemma 5. Let a; a� be dire
tions, and �; �� be non-zero algebrai
 numbersof degrees r and r�, respe
tively. Then the polynomials P�(xa) Qaj<0x�rajj andP��(xa�) Qa�j<0x�r�a�jj are asso
iated in Z[x℄ if and only if either a = a� and �and �� are 
onjugated, or a = �a� and � and 1=�� are 
onjugated.Proof. The `if' part of the statement is trivial. Suppose that P�(xa) Qaj<0x�rajjand P��(xa�) Qa�j<0x�r�a�jj are asso
iated. Then the degrees of � and �� must



20 L. Hajdu and R. Tijdemanbe equal, i.e. r = r�. For 1 � 
 � r let �(
) and ��(
) be the 
onjugates of �and ��, respe
tively. Let L be any �eld whi
h 
ontains the splitting �elds ofboth P� and P�� . Then we have the fa
torizationsP�(xa) Yaj<0x�rajj = rY
=1 ~f(a;�(
))(x)and P��(xa�) Ya�j<0x�r�a�jj = rY
=1 ~f(a�;��(
))(x)in L[x℄, where the polynomials on the right hand sides are de�ned in Lemma2. By our assumption and Lemma 3 we obtain that for ea
h 
1 with 1 �
1 � r there exists a 
2 also with 1 � 
2 � r, su
h that ~f(a;�(
1))(x) and~f(a�;��(
2))(x) are asso
iated elements in L[x℄. By 
omparing the exponentsof xj (j = 1; : : : ; n) in these polynomials, we get that a = �a� holds, andfor the 
orresponding pairs (
1; 
2), �(
1) = ��(
2) or �(
1)��(
2) = 1 is valid,respe
tively. This yields that f�(
) : 1 � 
 � rg = f��(
) : 1 � 
 � rg orf�(
) : 1 � 
 � rg = f1=��(
) : 1 � 
 � rg, respe
tively, whi
h establishesthe `only if' part of the statement. The proof of the lemma is now 
omplete.utProof (of Theorem 3). By de�nition, for every u 2 U the fun
tion F(u;S) isdivisible by f(ak;�k) for any k with 1 � k � d. Hen
e by Lemma 2 M(u;S)has zero line sums 
orresponding to the pairs in S. This proves the se
ondstatement of the theorem.LetH = ff : A! Z j f has zero absorption line sums for the elements of Sg :We �rst prove that the swit
hing atoms M(u;S) (u 2 U) generate H . Combin-ing Corollary 2 and Lemmas 4 and 5, for any g 2 H we obtainFS(x) j �g(x) in Z[x℄ :Hen
e there exists a polynomial Q(x) = Pu2U 
uxu with 
u 2 Z (u 2 U) su
hthat Q(x)FS(x) = �g(x). We rewrite this equation as�g(x) = Xu2U 
uF(u;S)(x) :Now by the de�nitions of �g(x) and the swit
hing atoms M(u;S) we immedi-ately obtain g = Xu2U 
uM(u;S) ;
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h proves that the fun
tions M(u;S) generate H .Suppose now that for some 
oeÆ
ients lu 2 Z we haveXu2U luM(u;S)(i) = 0 for i 2 A : (5)By the de�nitions of the swit
hing atoms, at the minimal 
orner of M(0;S) allthe other swit
hing atoms vanish. This immediately implies l0 = 0. Consid-ering now M(u;S) with u 2 U in in
reasing lexi
ographi
al order, we 
on
ludethat all the 
oeÆ
ients lu are zero in (5). This shows that the swit
hing atomsare linearly independent, whi
h 
ompletes the proof of the theorem. utRemark 6. Similarly as in 
ase of the 
lassi
al problem of dis
rete tomographyin Se
tion 3, it would be possible to provide an algorithm that produ
es a"small" integral solution to (1) in 
ase of emission tomography. We omit thedetails.5 Tomography on 
urvesIn this se
tion we illustrate that our method is rather 
exible in the sensethat variations to other sums than line sums are possible. In this more gen-eral 
ase there do not exist translation invariant swit
hing atoms. However,our polynomial method allows us to 
onstru
t non-trivial 
on�gurations withvanishing sums and 
hara
terize su
h 
on�gurations in Theorems 4 and 5.We shall illustrate the method in two dimensions by examples where sumsare taken over sets of the shape Hk = f(i; j) 2 A : akj = bkG(i) + tgwhere G : Z ! Z, t 2 Z and the (ak; bk) are distin
t pairs of 
o-prime integers for k = 1; : : : ; d. The basi
 idea is that to the given fun
tiong : A ! Z we adjoin the "generating" polynomial P(i;j)2A g(i; j)xG(i)yj (in-stead of P(i;j)2A g(i; j)xiyj). Sin
e akj = bkG(i)+ t the exponent pairs (G(i); j)for (i; j) 2 Hk are on the lines aky = bkx + t. So the sums over Hk turn intoline sums and we 
an apply the pre
eding theory. Doing so we �nd swit
h-ing atoms. The problem is to return to the original situation, where there isno linear stru
ture. However, by 
onstru
ting polynomials with exponents ofpres
ribed form whi
h are multiples of the swit
hing atom polynomial, we areable to 
onstru
t 
on�gurations with vanishing sums for all given Hk. We givetwo examples.Example 6 (broken line sums). We 
onsider the situation where light (or X-ray) entering from the left along the hal
ine ay = bx + t (x � 0) is brokenwhen rea
hing the y-axis and 
ontinues along the hal
ine ay = 
bx+t (x > 0),where 
 is a given integer.To des
ribe this 
ase, we slightly need to adjust our previous settings. Letm1;m2 be positive integers and n1 a negative integer. Put



22 L. Hajdu and R. TijdemanA = f(i; j) 2 Z2 : n1 � i < m1; 0 � j < m2g ;and let ak; bk (k = 1; : : : ; d) and 
 be non-zero integers with g
d(ak; bk) = 1and ak � 0 (k = 1; : : : ; d). SetTkt = f(i; j) 2 Z2 : i � 0; akj = bki+ tg[ f(i; j) 2 Z2 : i > 0; akj = 
bki+ tgfor k = 1; : : : ; d and t 2 Z. Let (i1; j1) k� (i2; j2) for (i1; j1); (i2; j2) 2 A andk = 1; : : : ; d if and only if these points belong to the same set Tkt for someinteger t. Write H(k)1 ; : : : ; H(k)tk for the equivalen
e 
lasses of k� on A. These
lasses are in fa
t the interse
tions of the broken lines Tkt with A. By thebroken line sums 
orresponding to (ak; bk) of a given fun
tion g : A! Z wemean the expressions
kl := X(i;j)2H(k)l g(i; j) for k = 1; : : : ; d; l = 1; : : : ; tk : (6)Note that (6) is a spe
ial 
ase of equation (1), with unit weights %k = 1(k = 1; : : : ; d).With the above modi�
ations we 
an apply our ma
hinery to the brokenline 
ase as well. First we introdu
e some further notation.Let S = f(ak; bk)gdk=1 with (ak; bk) as above, and write N1 = dPk=1 ak andN2 = dPk=1 jbkj. We say that S is valid for A, if N1 < m1 � n1 and N2 < m2.For k = 1; : : : ; d putfk(x; y) = (xakybk � 1; if bk � 0xak � y�bk ; if bk < 0 ;and set FS(x; y) = dQk=1 fk(x; y).In view of the broken lines, we de�ne�g(x; y) = x�n1 0� 0Xi=n1 m2�1Xj=0 g(i; j)xiyj + m1�1Xi=1 m2�1Xj=0 g(i; j)x
iyj1A :as the "generating" polynomial of g : A ! Z. Note that the fa
tor x�n1 isintrodu
ed only to keep the exposition inside Z[x; y℄.For the solutions of (6) we have the followingTheorem 4. Let A and S be as above, with the assumption that S is validfor A. Then a fun
tion g : A ! Z has zero broken line sums 
orrespondingto S if and only if �g(x; y) is divisible by FS(x; y) in Z[x; y℄.
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rete Tomography 23Proof. Let g : A! Zbe an arbitrary fun
tion and let (a; b) 2 S. For simpli
itywe assume that b � 0, the 
ase when b < 0 is similar. Observe that we 
anwrite�g(x; y) = x�n1Xt2Z0BB� 0Xi=n1 Xaj=bi+t0�j<m2g(i; j)xiyj + m1�1Xi=1 Xaj=
bi+t0�j<m2 g(i; j)x
iyj1CCA =x�n1 Xb2Zyt=a0BB� 0Xi=n1 Xaj=bi+t0�j<m2g(i; j)(xyb=a)i + m1�1Xi=1 Xaj=
bi+t0�j<m2 g(i; j)(xyb=a)
i1CCA :Now just as previously (see e.g. the proof of Theorem 1) we obtain that g haszero broken line sums 
orresponding to (a; b) 2 S if and only if xayb�1 divides�g(x; y) in Z[x; y℄. Observing that the polynomials fk(x; y) (k = 1; : : : ; d) arepairwise 
oprime (in fa
t prime) elements of Z[x; y℄, the theorem follows. utWe illustrate the above theory by the example when S = f(1; 1); (3; 1)gand 
 = 2. In this 
ase the broken line sums are 
al
ulated in a

ordan
e withFigure 2. Moreover, we have

3y=x+t2

y=x+t1
3y=2x+t2

y=2x+t1

x

y

Fig. 2. Broken lines 
orresponding to S = f(1; 1); (3; 1)g and 
 = 2.FS(x; y) = (xy � 1)(x3y � 1) = x4y2 � x3y � xy + 1 :Theorem 4 gives that g : A! Z has zero broken line sums 
orresponding to Sif and only if FS divides �g over Z. Hen
e to present a non-trivial example, weshould �nd a non-zero multiple of FS in whi
h all the exponents of x greater



24 L. Hajdu and R. Tijdemanthan some non-negative integer are even. For swit
hing 
on�gurations entirely
ontained in f(x; y) : x � 0g or in f(x; y) : x > 0g the theory of Se
tion 3applies. Suppose we want a swit
hing 
on�guration with "minimal 
orner" at(�3; 0). Then all exponents of x in �g greater than 3 should be odd. We have(xy + 1)FS(x; y) = x5y3 � x3y � x2y2 + 1 = x3(x2y3 � y � x�1y2 � x�3) :Hen
e if n1 � �3, m1 � 3 and m2 � 4 then the fun
tion g : A ! Zrepresented by 0 : : : 0 0 0 0 0 0 0 : : : 0... ... ... ... ... ... ... ... ... ... ...0 : : : 0 0 0 0 0 0 0 : : : 00 : : : 0 0 0 0 0 1 0 : : : 00 : : : 0 0 0 �1 0 0 0 : : : 00 : : : 0 0 0 0 �1 0 0 : : : 00 : : : 0 1 0 0 0 0 0 : : : 0"has zero broken line sums along the 
orresponding broken lines. Here " indi-
ates the y-axis.Example 7 (parabola sums). We 
onsider the situation when the X-rays (orlight) pass along parabolas ay = bx2 + t (x � 0).Let A be as before, and let ak; bk be 
oprime non-zero integers with ak � 0(k = 1; : : : ; d) . Let (i1; j1) k� (i2; j2) for (i1; j1); (i2; j2) 2 A and k = 1; : : : ; dif and only if bk(i21 � i22) = ak(j1 � j2) (i.e. for some integer tk we havebki21 = akj1 � tk and bki22 = akj2 � tk, that is, these points lay on the sameverti
al translate of the graph of the fun
tion aky = bkx2). Further, writeH(k)1 ; : : : ; H(k)tk for the equivalen
e 
lasses of k� on A. Let a fun
tion g : A! Zbe given. By the parabola sums of g 
orresponding to (ak; bk) we mean theexpressions 
kl := X(i;j)2H(k)l g(i; j) for k = 1; : : : ; d; l = 1; : : : ; tk : (7)Obviously, (7) is a spe
ial 
ase of equation (1) with %k = 1 (k = 1; : : : ; d).As it will turn out, with the modi�
ations indi
ated above we 
an applyour previous results to this 
ase. We need, however, some notation. Let S, N1,N2, fk(x; y) and FS(x; y) be de�ned as in 
ase of broken lines.We 
hoose �g(x; y) = X(i;j)2A g(i; j)xi2yjas the "generating" polynomial of g : A! Z.For the solutions of (7) we have the following
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rete Tomography 25Theorem 5. Let A and S be as above, with the assumption that S is validfor A. Then a fun
tion g : A ! Z has zero parabola sums 
orresponding toS if and only if �g(x; y) is divisible by FS(x; y) in Z[x; y℄.Proof. Let g : A! Zbe an arbitrary fun
tion and let (a; b) 2 S. For simpli
itywe assume that b � 0, the 
ase when b < 0 is similar. Observe that we 
anwrite�g(x; y) =Xt2Z Xaj=bi2+t(i;j)2A g(i; j)xi2yj =Xt2Zyt=a Xaj=bi2+t(i;j)2A g(i; j)(xyb=a)i2 :Now similarly as e.g. in the proof of Theorem 1, one 
an easily verify that g haszero parabola sums 
orresponding to (a; b) 2 S if and only if xayb � 1 divides�g(x; y) in Z[x; y℄. As the polynomials fk(x; y) (k = 1; : : : ; d) are pairwise
oprime elements of Z[x; y℄, the theorem follows. utWe illustrate the example by analyzing two parti
ular 
ases. We start withS = f(1; 1); (1; 2)g, i.e. the parabolas are given by y = x2+t1 and y = 2x2+t2,respe
tively. In this 
ase we haveFS(x; y) = (xy � 1)(xy2 � 1) = x2y3 � xy2 � xy + 1 :Theorem 5 gives that g : A ! Z has zero parabola sums 
orresponding toS if and only if FS divides �g over Z. The problem, however, is to �nd somenon-zero multiple of FS su
h that all the exponents of x are squares. Supposewe want a swit
hing 
on�guration with "minimal 
orner" at the origin. One
an readily verify that(x2y4+xy3+xy2+y2+y+1)FS(x; y) = x4y7�xy4�xy3�xy2�xy+y2+y+1 :Thus if m1 � 2 and m2 � 8 then the fun
tion g : A! Z represented by0 0 0 0 : : : 0... ... ... ... ... ...0 0 0 0 : : : 00 0 1 0 : : : 00 0 0 0 : : : 00 0 0 0 : : : 00 �1 0 0 : : : 00 �1 0 0 : : : 01 �1 0 0 : : : 01 �1 0 0 : : : 01 0 0 0 : : : 0"provides a non-trivial 
on�guration having zero parabola sums along theparabolas y = x2 + t1 and y = 2x2 + t1 for any t1; t2 2 Z.



26 L. Hajdu and R. TijdemanFinally, we 
onsider S = f(1; 1); (1; 2); (1; 3)g, i.e. we have three parabolasgiven by y = x2 + t1, y = 2x2 + t2 and y = 3x2 + t3, respe
tively. Now wehave FS(x; y) = (xy � 1)(xy2 � 1)(xy3 � 1) == x3y6 � x2y5 � x2y4 � x2y3 + xy3 + xy2 + xy � 1 :By Theorem 5 we know that g : A! Z has zero parabola sums 
orrespondingto S if and only if FS divides �g over Z. The problem is again to �nd somenon-zero multiple of FS in whi
h all the exponents of x are squares. One 
aneasily 
he
k that the polynomial(y26+y25+2y24+y23+y22)x9� (y21+y20+2y19+2y18+3y17+3y16+4y15++4y14 + 4y13 + 3y12 + 3y11 + 2y10 + 2y9 + y8 + y7)x4 + (y15 + 2y14 + 4y13++6y12+8y11+9y10+10y9+10y8+10y7+9y6+8y5+6y4+4y3+2y2+y)x�(y12++2y11 + 4y10 + 5y9 + 7y8 + 7y7 + 8y6 + 7y5 + 7y4 + 5y3 + 4y2 + 2y + 1)is a multiple of FS in Z[x; y℄. Hen
e we obtain a non-trivial g : A! Z havingzero parabola sums along the three parabolas by repla
ing x9 with x3 and x4with x2 and making the 
orresponding table.A
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