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Abstract. We propose a conjecture, similar to Skolem’s conjec-
ture, on a Hasse-type principle for exponential diophantine equa-
tions. We prove that in a sense the principle is valid for ”almost
all” equations. Based upon this we propose a general method for
the solution of exponential diophantine equations. Using a gener-
alization of a result of Erdős, Pomerance and Schmutz concerning
Carmichael’s λ function, we can make our search systematic for
certain moduli needed in the method.

1. Introduction

Let a1, . . . , ak, b11, . . . , b1ℓ, . . . , bk1, . . . , bkℓ be non-zero integers, c be
an integer, and consider the exponential diophantine equation

(1.1) a1b
α11
11 . . . bα1ℓ

1ℓ + · · ·+ akb
αk1
k1 . . . bαkℓ

kℓ = c

in non-negative integers α11, . . . , α1ℓ, . . . , αk1, . . . , αkℓ.
The effective and ineffective theory of (1.1) has a long history. In case

of k = 2, one can apply Baker’s method to give explicit bounds for the
exponents α11, . . . , α1ℓ, α21, . . . , α2ℓ; see e.g. results of Győry [10, 11].
Note that by results of Vojta [17] and Bennett [6], the solutions to (1.1)
can still be ”effectively determined” for k = 3, 4, under some further
restrictive assumptions. On the other hand, it is also known that for
any k, the number of those solutions to equation (1.1) for which the left
hand side of has no vanishing subsum is finite, and it can be bounded
explicitly in terms of k and ℓ (see [9] and [4], and the references given
there).

In this paper we propose the following
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Conjecture. Suppose that equation (1.1) has no solutions. Then
there exists an integer m with m ≥ 2 such that the congruence

(1.2) a1b
α11
11 . . . bα1ℓ

1ℓ + · · ·+ akb
αk1
k1 . . . bαkℓ

kℓ ≡ c (mod m)

has no solutions in non-negative integers α11, . . . , α1ℓ, . . . , αk1, . . . , αkℓ.

The conjecture is a variant of a classical conjecture of Skolem [15].
Note that the original formulation of Skolem is not completely precise;
for an exact formulation one should e.g. see [14], pp. 398–399. If
true, then the conjecture can be considered as a Hasse-type principle
for exponential diophantine equations. There are several results in the
literature about Skolem’s conjecture; we only mention a theorem of
Schinzel [14] and a recent paper of Bartolome, Bilu and Luca [5], and
the references given there.

The results of Schinzel [14] also imply that in case of k = 1 our con-
jecture is true. In this paper first we show that for any fixed a1, . . . , ak,
b11, . . . , b1ℓ, . . . , bk1, . . . , bkℓ, the set of integers c for which the above
conjecture fails, has density zero even inside the set of those values c
for which equation (1.1) is not solvable. Moreover, here the appropriate
moduli m can be chosen to have the extra property that they are all
divisible by r, for any preliminary chosen integer r. The main tools in
the proof are a generalization of a classical result of Erdős, Pomerance
and Schmutz [8] concerning small values of Carmichael’s λ-function,

and a result of Ádám, Hajdu and Luca [1] about the number of values
c up to any x, for which equation (1.1) is solvable. Further, we also give
some ”numerical evidence” for the conjecture, by checking its validity
in different settings, and for a relatively large set of the parameters
involved.

As an application, we present a general method for the solution
of concrete equations of the type (1.1) under certain assumptions.
Namely, if the Conjecture is true, then assuming that (1.1) has only
finitely many solutions, our method makes it possible to find all these
solutions, at least in principle. In fact the assumption about the finite-
ness of solutions can be relaxed. To illustrate the method, we present
some concrete examples, as well. We mention that in the literature one
can find several sparse results of this type. For example, Alex, Brenner
and Foster in a series of papers (see e.g. [7, 2, 3] and the references
there) solved several equations of type (1.1), with typically k = 4, 5 and
choices of b11, . . . , b1ℓ, . . . , bk1, . . . , bkℓ as small primes. However, their
way to find appropriate moduli like in (1.2) is rather ad-hoc, while in
our method such moduli can be constructed systematically, based upon
generalizations of arguments of Erdős, Pomerance and Schmutz [8].
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Finally, we mention that we have implemented our algorithm in Sage
[16]. The program, together with a complete description can be down-
loaded from the link www.math.unideb.hu/∼hajdul/expeqsolver.zip.

2. New results

In our first result we show that the Conjecture formulated in the
Introduction is true for ”almost all” cases. For the precise formulation,
we need the following notion. If A ⊆ B ⊆ Z and B, then the density
of A inside B is defined as

lim
x→∞

#{a ∈ A : |a| ≤ x}
#{b ∈ B : |b| ≤ x}

,

if the limit exists. Here and later on, #C denotes the number of ele-
ments of a set C.

Theorem 2.1. Let a1, . . . , ak and b11, . . . , b1ℓ, . . . , bk1, . . . , bkℓ be fixed,
and let H be the set of right hand sides in (1.1) for which the Conjecture
is violated, that is

H = {c ∈ Z : (1.1) is not solvable, but (1.2) is solvable for all m}.

Then H has density zero inside the set

H0 = {c ∈ Z : (1.1) is not solvable}.

Note that Theorem 2.1 obviously implies that H has density zero
inside Z.

In the proof of Theorem 2.1 the following result plays an important
role. This statement is a variant of a theorem of Erdős, Pomerance and
Schmutz [8] and Hajdu and Tijdeman [12]. The important difference is
the extra requirement that the appropriate moduli should be divisible
by a fixed number r. This relation will play an important role in our
method.

Let λ(m) be the Carmichael function of the positive integer m, that
is the least positive integer for which

bλ(m) ≡ 1 (mod m)

for all b ∈ Z with gcd(b,m) = 1. Later, we shall need the following
information on small values of the Carmichael function.

Theorem 2.2. There exist positive constants C1 > 1 and C2 such that
for any integer r and for every large integer i there is an integer m
with r | m, such that

logm ∈ [log i+ log r, (log i)C1 + log r]
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and

λ(m) < r(logm/r)C2 log log logm/r.

Our next theorem provides numerical evidence for the Conjecture,
for various settings.

Theorem 2.3. Let c be an integer with 0 ≤ c ≤ 1000. Then the
Conjecture is valid for the following cases of equation (1.1):

(1) pα1
1 −pα2

2 = c and pα1
1 +pα2

2 −pα3
3 = c where p1, p2, p3 are distinct

primes less than 100,
(2) pα1

1 + · · · + p
αt−1

t−1 − pαt
t = c where p1 < · · · < pt are primes less

than 30 with 4 ≤ t ≤ 8,
(3) pα1

1 pα2
2 + pα3

3 pα4
4 − pα5

5 pα6
6 = c where p1, p2, p3, p4, p5, p6 are the

primes 2, 3, 5, 7, 11, 13 in some order,
(4) 2α1 +3α2 +5α3 +7α4 +11α5 +13α6 +17α7 +19α8 −23α9 = 55191.

Remark. The last equation in Theorem 2.3 has no solutions, but it
has solutions if 55191 is replaced by any c with 0 ≤ c < 55191.

3. The application of the Conjecture to the explicit
solution of exponential diophantine equations

We propose the following principal strategy to find all solutions of
equations of type (1.1). For the moment, for simplicity assume that
the equation has only finitely many solutions. We shall discuss the
question that with what settings the strategy may work later.

Principal strategy.

(I) Find the suspected list of all solutions to equation (1.1) by an
exhaustive search. [Note: Of course, at this point we cannot be
sure that the list is complete. However, based upon the finite-
ness results concerning (1.1), heuristically we may be strongly
confident about it.]

(II) Choose one of the unknowns, αij say, and based upon the sus-
pected list of all solutions take an integer α0 with αij < α0.
[Note: By choosing more than one unknowns we can speed
up the calculations in an obvious way. However, to keep the
presentation at this point simple, now we work only with one
exponent.

(III) Instead of equation (1.1) consider the equation obtained by re-
placing the coefficient ai with aib

α0
ij . [Note: If our suspected list

contained all solutions to (1.1) indeed, then the new equation
has no solutions in non-negative integer exponents.]
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(IV) Find an m such that the new equation has no solution modulo
m. Having such an m, conclude that αij < α0 holds for all
solutions of (1.1). [Note: If the Conjecture is true, then such
a modulus exists. One can try to construct an appropriate
m by the help of Theorem 2.2 (and its proof). Observe that
for the unsolvability of the congruence modulo m the relation
r := bα0

ij | m should hold, hence the importance of this property
comes from.]

Observe that though the strategy contains heuristic points, once we
succeed to find an appropriate modulus m in the last step, it is justified
that the original equation (1.1) has no solutions with αij ≥ α0. Hence
we could get rid of an unknown, and we can repeat the whole procedure
for an equation in one less variables than the original one. Finally, if
everything works out well, we get all solutions.

This strategy works, at least in principle, if there exists a (not at all
preliminary computable) constant A, such that for all solutions of (1.1)
we have min

1≤i≤k,1≤j≤ℓ
αij < A. (Since then we can eliminate one of the

unknowns by the above method, etc.) This is the case, for example, if
(1.1) has no solution with vanishing subsum.

At this point we mention that one can find in the literature several
sparse results of this type; see e.g. the papers [7, 2, 3] and the references
there. However, in these papers the appropriate moduli are found in
a rather ad-hoc way, at least no clear strategy is explained to choose
them. In our results we could use the moduli provided by Theorem
2.2. We give a detailed explanation in the proofs of our forthcoming
theorems.

We illustrate our method by applying it to three branches of prob-
lems. In each case, we give two types of results. The first one always
only shows that in the equations considered, one of the exponents can
be bounded. To solve these equations completely one should iterate
the method. The second type is where this iteration is executed, and
the complete solution of a particular equation is presented.

Our next result concerns the representation of c = 0 in (1.1) as sums
and differences of powers of several distinct primes. Note that this
result is closely related to a question of Brenner and Foster [7].

Theorem 3.1.

(1) Let 3 ≤ t ≤ 6 and let p1, . . . , pt be distinct primes with pi ≤
19 (i = 1, . . . , t). Then for the non-negative integer solutions
α1, . . . , αt of the equation

pα1
1 + · · ·+ p

αt−1

t−1 − pαt
t = 0
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we have min
1≤i≤t

αi ≤ 15.

(2) The equation

3α1 + 5α2 + 11α3 + 13α4 + 17α5 − 19α6 = 0

has only two solutions in non-negative integers α1, . . . , α6, given
by

(α1, α2, α3, α4, α5, α6) = (0, 1, 1, 0, 0, 1), (1, 0, 0, 1, 0, 1).

The following theorem concerns the case where all but one primes
are equal. Obviously, in this case the exponents of these primes can
be arranged in a non-decreasing way. Further, the smallest exponent
must always be zero, that is why the constant 1 appears on the left
hand side.

Theorem 3.2.

(1) Let 3 ≤ t ≤ 9 and let p, q be distinct primes with p, q ≤ 19.
Then for the non-negative integer solutions α1, . . . , αt of the
equation

1 + pα1 + · · ·+ pαt−1 − qαt = 0

we have min
1≤i≤t

αi ≤ 6.

(2) The diophantine equation

1 + 5α1 + 5α2 + 5α3 + 5α4 + 5α5 + 5α6 + 5α7 + 5α8 − 17α9 = 0

has only two solutions in non-negative integers α1, . . . , α9 with
α1 ≤ · · · ≤ α8, given by

(α1, α2, α3, α4, α5, α6, α7, α8, α9) =

= (0, 0, 0, 0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 2, 3, 3, 2).

Our final result concerns the case ℓ = 2 in (1.1).

Theorem 3.3.

(1) Let p1, . . . , p6 be distinct primes with pi ≤ 19 (i = 1, . . . , 6).
Then for the non-negative integer solutions α1, . . . , α6 of the
equation

pα1
1 pα2

2 + pα3
3 pα4

4 − pα5
5 pα6

6 = 1

we have min
1≤i≤6

αi ≤ 5.

(2) The equation

2α13α2 + 5α37α4 − 11α513α6 = 1
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has only two solutions in non-negative integers α1, . . . , α6, given
by

(α1, α2, α3, α4, α5, α6) = (0, 0, 0, 0, 0, 0), (0, 2, 1, 0, 0, 1).

4. Proofs

We start with the proof of Theorem 2.2.

Proof of Theorem 2.2. Theorem 5 of [12] is just the statement with
r = 1. So let C1 and C2 be the constants implied by Theorem 5 of [12],
let r be an arbitrary positive integer, and let i be sufficiently large.
Then by Theorem 5 of [12] there exists an n such that

log n ∈ [log i, (log i)C1 ] and λ(n) < (log n)C2 log log logn.

Put m := rn. Then obviously, r | m. Further, we immediately obtain

logm ∈ [log i+ log r, (log i)C1 + log r].

Finally, as it is well-known, for any positive integers a, b we have
λ(ab) ≤ aλ(b). Hence

λ(m) ≤ rλ(n) < r(log n)C2 log log logn = r(logm/r)C2 log log logm/r,

and the theorem follows. �
Now we continue with the proof of Theorem 2.1. For this, beside

Theorem 2.2 we need the following results of Ádám, Hajdu and Luca
[1].

Lemma 4.1. Using the notation of Theorem 2.1, write H0(x) for the
elements h of H0 with |h| ≤ x where x is a positive real number. Then
for all large x we have

#H0(x) > 2x− C3(log x)
C4

where C3 and C4 are constants depending only on the parameters k, ai
and bij occurring in (1.1).

Proof. The statement is a simple consequence of Theorem 1 of [1]. �
We also need the following

Lemma 4.2. Let m = qβ1

1 · · · qβz
z where q1, . . . , qz are distinct primes,

β1, . . . , βz are positive integers, and let b ∈ Z. Then we have

#{bu (mod m) : u ≥ 0} ≤ λ(m) + max
1≤i≤z

αi.

Proof. The statement is Lemma 1 in [1]. �
Now we are ready to prove Theorem 2.1.
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Proof of Theorem 2.1. For a positive real number x set

H(x) := {h ∈ H : |h| ≤ x} and H0(x) := {h ∈ H0 : |h| ≤ x}.
We apply Lemmas 4.1 and 4.2, and Theorem 2.2 with r = 1 to prove
our statement. Partly we follow the argument of Theorem 1 of [13]; see
also the proof of Theorem 3 in [1].

Throughout the proof, we assume that x is large enough for the argu-
ments to hold. By Theorem 2.2 we can choose an integer m, satisfying
m ≤

√
x and

(4.1) λ(m) < (logm)C2 log log logm.

We may assume that m is the largest integer with these properties.
Then by Theorem 2.2 we have that m > f(x), with some monotone
increasing function f of x, tending to infinity as x goes to infinity.

Let m = qβ1

1 · · · qβz
z be the prime factorization of m, where q1, . . . , qz

are distinct primes and β1, . . . , βz are positive integers. Write C(m)
for the collection of the modulo m residue classes of those integers c
for which the congruence (1.2) is solvable. Lemma 4.2 implies that we
have

(4.2) #C(m) ≤ (λ(m) + max
1≤i≤z

βi)
kℓ.

On the other hand, by (4.1) we easily get that

(4.3) λ(m) + max
1≤i≤z

βi ≤ (logm)C2 log log logm +
logm

log 2
.

Now by inequalities (4.2) and (4.3) we get that

(4.4) #C(m) < (logm)C5 log log logm,

where C5 is a constant depending only on k and ℓ.
Write now x = um+ v where u is a positive integer and v is a non-

negative real number with v < m. Observe that by our choice of m, u
and v we have that

log u ≥ (log(u+ 1))/2 ≥ (log x− logm)/2 ≥ (log x)/4.

Let now ε be an arbitrary positive real number. Then the above in-
equality implies

εx/3 ≥ εum/3 > m > v.

Further, we also have

εx/3 > C3(log x)
C4/2,

where C3 and C4 are given in Lemma 4.1. Finally, the lower bound
m > f(x) also gives

εx/3 ≥ εum/3 > u(logm)C5 log log logm.
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Thus, since by (4.4) and x = um+ v we have that

#H(x) ≤ 2(u(logm)C5 log log logm + v) + 1,

the statement immediately follows by comparing the above inequality
with

#H0(x) > 2x− C3(log x)
C4 ,

given by Lemma 4.1. �

Proof of Theorem 2.3. Since the proofs of the parts (1) to (4) are simi-
lar, we only give details in case of (3). Moreover, here we consider only
the equations

(4.5) 2α13α2 + 5α37α4 − 11α513α6 = c

with 0 ≤ c ≤ 1000. First, letting the exponents αi (i = 1, . . . , 6) vary
between 0 and 12, we find a list L (with #L = 224) of c values for
which we expect equation (4.5) not to have solutions. (Note that some
equations in (3) have solutions with max

1≤i≤6
αi = 12.) At this stage, at

least we are certain that for integers c with 0 ≤ c ≤ 1000 not in the
list L, equation (4.5) is solvable. Now we investigate the values c ∈ L
one by one. The smallest such value is c = 11, we shall work only with
this, the others can be handled similarly. Take the modulus

m := 7031324575728 = 24 · 32 · 17 · 19 · 37 · 73 · 97 · 577.

(Later we shall explain how to find this m.) Now we could simply say
that as one can easily check, equation (4.5) has no solutions modulo
m. However, as this check is not that easy for some of the instances
in (1) to (4), it is worth to do it in a sophisticated way. (In particular,
since the appropriate modulusm can be much larger than the one given
above.)

First observe that all the factors of m have λ values composed ex-
clusively of 2-s and 3-s. (This is the choice indicated by the proof of
Erdős, Pomerance and Schmutz [8].) This makes it possible to com-
bine the information obtained for the coefficients α1, . . . , α6 modulo
the separate factors. (It is highly not economic to work with m as a
modulus directly.) For example, modulo 24 we immediately get that
α1 = 0 must hold, and we also get some congruence conditions for the
other exponents, modulo a power of 2 (since the orders of all the factors
modulo 24 are certainly powers of 2). Then, modulo 32 we get further
conditions on α3, α4, α5 and α6, modulo ord9(5) = 6, ord9(7) = 2,
ord9(11) = 6 and ord9(13) = 3, respectively. Finally, using all the fac-
tors of m as modulus, the resulting system of congruences obtained for
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the exponents α1, . . . , α6 proves to be non-solvable. This shows that
equation (4.5) with c = 11 has no solutions modulo m indeed.

In all the other cases the proof goes along the same lines. In some
cases one really needs to work with huge moduli. However, in all cases
we encountered, the modulus

m∗ = 24 · 32 ·
∏

p−1=2u3v5w

p

3<p<20000

proved to be appropriate. That is, the m we found was always a divisor
of m∗.

Finally, we explain how we found the appropriate moduli m. In fact
the outlined procedure in many cases could be simplified, e.g. starting
with a shorter list of prime powers.

Let M be the list of all prime power divisors of m∗. Consider an
equation of the form

(4.6) bα1
1 bα2

2 + bα3
3 bα4

4 − bα5
5 bα6

6 = c

(in all the other instances the procedure is similar). Define a heuristic
measurement f(t) for the ”goodness” of the elements t of M , with
respect to the bases b1, . . . , b6. We take the function f(t) defined as

f(t) = o1o2o3o4o5o6

where oi = ordt(bi) (i = 1, . . . , 6), with the convention oi = ordt(bi) = 1
if gcd(t, bi) > 1. Then we take the first t from M as modulus, for which
f(t) is minimal. By this modulus, we obtain some conditions for the
exponents αi modulo oi (i = 1, . . . , 6). In particular, if t is a power of
the prime bi, then we know that either αi is smaller than the exponent
of bi in t, or bαi

i ≡ 0 (mod t).
For simplicity, suppose that gcd(bi, t) = 1 (i = 1, . . . , 6) and that we

have

αi ≡ βi (mod oi) (i = 1, . . . , 6),

with some βi subject to 0 ≤ βi < oi. Then we can rewrite equation 4.6
as

a1(b
′
1)

γ1(b′2)
γ2 + a2(b

′
3)

γ3(b′4)
γ4 − a3(b

′
5)

γ5(b′6)
γ6 = c

with

a1 = bβ1

1 bβ2

2 , a2 = bβ1

3 bβ2

4 , a3 = bβ1

5 bβ2

6 ,

and

b′i = boii , γi = (αi − βi)/oi (i = 1, . . . , 6).

Now we can apply the above method for this equation with M re-
placed by M \{t}, etc. In this way we could always guarantee that the
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next modulus t is the actually ”best”, which makes the computation
relatively fast.

Note that all the necessary exponentiations can be made locally,
which keeps the procedure economic. The calculations have been per-
formed by the program package Sage [16]. �
Proof of Theorem 3.1. We only deal with the second statement, since it
asserts the complete solution of an equation. Deriving an upper bound
for one of the exponents will be a part of our method, so part (1) of
the theorem can be proved in a similar way.

First, according to (I) of our Principal strategy, we find a suspected
list of all solutions of the equation

(4.7) 3α1 + 5α2 + 11α3 + 13α4 + 17α5 − 19α6 = 0

with 0 ≤ α1, . . . , α6 < 15. We get only two solutions, namely

(α1, α2, α3, α4, α5, α6) = (0, 1, 1, 0, 0, 1), (1, 0, 0, 1, 0, 1).

So we strongly suspect that there are no other solutions. Now, following
steps (II) and (III) of the strategy, but shifting the powers of all bases,
we consider the equation

32 · 3α′
1 + 52 · 5α′

2 + 112 · 11α′
3 + 132 · 13α′

4 + 17 · 17α′
5 − 192 · 19α′

6 = 0.

If our list of two solutions is complete, then the above equation has no
solutions in non-negative integers α′

1, . . . , α
′
6. To show this, we find a

modulus m such that the congruence

32 ·3α′
1+52 ·5α′

2+112 ·11α′
3+132 ·13α′

4+17·17α′
5−192 ·19α′

6 ≡ 0 (mod m)

has no solutions. By a similar strategy as in the proof of Theorem 2.3,
we find that

m = 2 · 32 · 5 · 7 · 13 · 17 · 19 · 37 · 73 · 109 · 163 · 433
is an appropriate modulus. This means that in any solution of (4.7),
one of

α1 ≤ 1, α2 ≤ 1, α3 ≤ 1, α4 ≤ 1, α5 = 0, α6 ≤ 1

must be valid. This means that one of the exponents α1, . . . , α6 is fixed,
and may take at most two values. We consider only the possibility
α1 = 0, the other cases can be treated similarly. In this case our
equation reads as

1 + 5α2 + 11α3 + 13α4 + 17α5 − 19α6 = 0.

Based upon our previous calculations, we suspect that this new equa-
tion has the only solution

(α2, α3, α4, α5, α6) = (1, 1, 0, 0, 1).
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Now similarly as above, but shifting only the exponent of 13, if the
conjecture is true, then there exists a modulus m such that the con-
gruence

1 + 5α2 + 11α3 + 13 · 13α′
4 + 17α5 − 19α6 ≡ 0 (mod m)

has no solutions modulo m. Now by the same method as previously,
we get that the modulus

m = 24 · 32 · 7 · 13 · 37 · 73 · 109 · 433
verifies this assertion. Hence we obtain that α4 = 0 must be valid, and
our equation reduces to

2 + 5α2 + 11α3 + 17α5 − 19α6 = 0.

By our earlier calculations, we strongly suspect that this equation
has the only solution

(α2, α3, α5, α6) = (1, 1, 0, 1).

Shifting now the exponent of 17 by one, the modulus

m = 2 · 3 · 7 · 17 · 37 · 73 · 97 · 109 · 163
witnesses that the equation arising has no solutions - in other words,
we must have α5 = 0.

Hence we obtain the equation

3 + 5α2 + 11α3 − 19α6 = 0,

with the only expected solution

(α2, α3, α6) = (1, 1, 1).

Now we shift the exponent of 5 to get the equation

3 + 52 · 5α′
2 + 11α3 − 19α6 = 0,

which turns out to have no solutions modulo

m = 33 · 52 · 7 · 31.
This leaves us with the equations

4 + 11α3 − 19α6 = 0 and 8 + 11α3 − 19α6 = 0.

The first equation has no solutions modulo 3. Further, we suspect that
the only solution of the second equation is

(α3, α6) = (1, 1).

Now we shift the exponent of 11 to obtain the equation

8 + 112 · 11α′
3 − 19α6 = 0,
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which has no solutions modulo

m = 52 · 112 · 31 · 61.
This means that α3 = 0 or α3 = 1. From this we easily get that
α3 = α6 = 1 must be valid. By following similar arguments, we could
solve all the encountered equations and we get that the solutions are
those listed in the statement. �
Proof of Theorem 3.2. The proof of this theorem is very similar to that
of Theorem 3.1, so we only indicate the main steps. Again, we only
deal with part (2) of the statement, part (1) could be handled similarly.

After finding the suspected solutions

(α1, α2, α3, α4, α5, α6, α7, α8, α9) =

= (0, 0, 0, 0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 2, 3, 3, 2),

using the modulus

m = 2 · 3 · 52 · 7 · 13 · 31 · 601
we successively get α1 = α2 = α3 = 0 and α4 ≤ 1.

In case of α4 = 0, using again m we successively obtain α5 = α6 = 0
and α7 = α8 = 1, whence α9 = 1, and we obtain the first solution
calculated preliminary. Note that in some of the above arguments, m
could be replaced by m/5 or m/601.

When α4 = 1, a similar calculation (but with rather more com-
plicated moduli) leads to the second solution, and the theorem fol-
lows. �
Proof of Theorem 3.3. Again, we only deal with part (2) of the state-
ment. Since the proof is very similar to the previous ones, we only give
the moduli used, and the information deduced for the exponents.

We start with the equation

2α13α2 + 5α37α4 − 11α513α6 = 1.

Then modulo 2 we get that α1 = 0. So the equation reduces to

3α2 + 5α37α4 − 11α513α6 = 1.

Now taking

m = 25 · 7 · 17 · 19 · 37 · 73 · 97 · 193
we obtain that α4 = 0. Then our equation takes the form

3α2 + 5α3 − 11α513α6 = 1.

Taking

m = 7 · 11 · 17 · 19 · 31 · 37 · 41 · 73 · 97 · 193
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we get that α5 = 0, that is, we have to solve

3α2 + 5α3 − 13α6 = 1.

This equation modulo

m = 52 · 7 · 11 · 31 · 41

yields that α3 ≤ 1. The equality α3 = 0 trivially leads to α2 = α6 = 0.
This gives the first solution. So we are left with the case α3 = 1, when
the equation is of the shape

3α2 − 13α6 = −4.

Then modulo

m = 27 · 7 · 19 · 37
we get that α2 ≤ 2, which easily yields α2 = 2 and α6 = 1. Thus we
get the second solution, and the theorem follows. �
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