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POLYNOMIALS DETERMINED BY
A FEW OF THEIR COEFFICIENTS

K. Gy6ry"2, L. Hajpu'?, A. PINTER!®* AND A. SCHINZEL

We prove some results which indicate that a monic polynomial over a field of char-
acteristic zero with exactly k distinct zeros may be determined up to finitely many
possibilities by any k of its non-zero proper coefficients.

1. INTRODUCTION

There are only few results in the literature about the number (multiplicities) of
the zeros of the sum of two polynomials where one of them is fixed; see e.g. [7], [4],
[2], and the references given there. A related problem is the following: when is it
true that a polynomial is ”determined” by a ”few” of its coefficients? In the present
paper we obtain some results in this direction. Further, we give an application to
superelliptic equations.

2. RESULTS

Throughout the paper, K will denote an arbitrary field of characteristic zero.
First we formulate the following

Problem. Is it true that a monic polynomial f € K[z] of degree n with exactly k
distinct zeros is determined up to finitely many possibilities by any k of its non-zero
proper coefficients?

n .
We consequently write f(z) = 2™+ ) a;2™ " with a; € K and call a; the proper
i=1
coefficients of f. When we say that a; (i € I) are given, we mean that we have the
values (i,a;) for i € I.
An affirmative answer to the above Problem is supported by the next four the-
orems. By [y] we will denote the integer part of y € R.
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Theorem 1. If a monic polynomial f € K[z]| of degree n has exactly two distinct
zeros, then it is determined up to n(n—1) [%] possibilities by any two of its non-zero
proper coefficients.

Remark 1. The examples f(z) = 2° + az? and z*! + 2az? + a® show that there
exist infinitely many polynomials of the same degree with exactly two distinct zeros
and two coefficients equal to 0.

Theorem 2. If a monic polynomial f € K[z]| of degree n has a zero of multiplicity
at least m, then it is determined up to n possibilities by any n—m+1 of its non-zero
proper coefficients.

In the special case when the first few coefficients are fixed we prove

Theorem 3. Letng,...,ng be positive integers withni+...4+nx =n and ay,...,a
given elements of K. Then there exist at most k! polynomials

(1) f@)=a"+az" '+ ... dapz” F +g(x), degg<n—k
in K[z] such that f(x) has ezxactly k distinct zeros with multiplicities ny,...,ny,
respectively.

Remark 2. It follows that there are k!p(n, k) polynomials f in K[z] with aq,...,ax
given and exactly k distinct zeros, where p(n, k) is the number of partitions of n
into k positive integer summands.

The following result shows that for polynomials of degree at most six, the answer
to our Problem is affirmative.

Theorem 4. Let f € K[z] be a monic polynomial of degree n with n < 6, having
exactly k distinct zeros (1 < k < n). Then f is determined up to c possibilities
by any k of its non-zero proper coefficients. Here ¢ denotes an absolute constant,
which can be given explicitly.

Theoretically, for each value of n one can find the answer to the problem, but
the required amount of computation increases quickly with n.

The following related theorems are motivated by their applications to superel-
liptic diophantine equations. From now on till the end of this section we assume

K=0Q

Theorem 5. Letl be an integer with | > 2. If f has at most one zero of multiplicity
not divisible by 1, then f is determined by the coefficients ay,...,am11, where m =
[(n—1)/I]. More precisely, in this case (G y2, ... ,0n_1,0y) can attain at most m+1
different tuples, which can be effectively determined in terms of a1, ..., am41,m,l.

We now show that the bounds given in Theorem 5 are sharp.

Proposition. Keeping the notation of Theorem 5, the following statements hold.

i) For any ay,...,a, there are infinitely many (am41,...,an) such that f has
at most one zero of multiplicity not divisible by [.

ii) For any [ there exist infinitely many tuples (ay,...,am+1) admitting exactly
m + 1 tuples (am+2,...,a,) such that f has at most one zero of multiplicity not

divisible by .



Polynomials determined by a few of their coefficients 3

Theorem 6. If f has at most two zeros of odd multiplicities, then f is determined
by the coefficients ay,...,amt2, where m = [(n — 2)/2]. More precisely, in this
case (Am+3,-- -, Gn-1,0n) can attain at most [(m +2)/2](m+1)(m +2)/2 different
tuples, and these tuples can be effectively determined in terms of a1, ..., am42,m.

On combining our Theorems 5 and 6 with a result of Brindza [1] we get the
following consequence concerning superelliptic equations.

Corollary. Let f(z) € Q[z] be as above. Further, let | be an integer with | > 2
ande =2ifl=2and1ifl>2. Putm=[(n—¢)/l] and

_{m+L if 1> 2,
~ Llm+2)/2[m+1)(m+2)/2, ifl=2.

Apart from at most N polynomials g(x) € Q[z] of degrees less than n — m — ¢, the
equation

f(z) 4+ g(z) = by'  for given b € Q\ {0} and for each given g,

has only finitely many solutions x,y € 7Z, and these solutions can be effectively
determined. Moreover, the exceptional polynomials g(x) can also be effectively de-
termined.

The first result of this type was obtained in [7]. For further related results, we
refer to [2].
We note that Theorem 3 has a similar consequence for superelliptic equations.

3. PROOFS

In the proofs of Theorems 1 to 4, we deal with polynomials with coefficients from
a field K of characteristic 0. To prove Theorem 1, we need the following lemma.

Lemma 1. If the polynomials f,g € K[z,y] are homogeneous of degrees i and j,
respectively, and the elements a,b of K are not both 0, then the system of equations

(2) flx,y) =a, g(z,y)=0b

has at most ij solutions in the algebraic closure of K, unless there exists an h €
K{[z,y] such that

flz,y) = ah(z,y)/ D g(x,y) = bh(z,y)/ 9.

Proof. By Bézout’s theorem, if the system (2) has more than ij solutions, then
(f(z,y) —a,g(x,y) — b) #1.
Putting x = ty we infer that
(' f(t,1) —a,y’g(t, 1) —b) £ 1.

Moreover, the greatest common divisor of two binomials of degrees i, j over a field
L, is either a binomial of degree (i,7), or an element of L (see [6]). Hence, taking
L = K (t), we infer the existence of a polynomial h € K (t) such that

WS ht) —1) | ' F ) —a), S R) —1) | @ g(t) - b),
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hence

F(t) = ah(t)GD | g(t) = bh(t)i/ (4D,

Proof of Theorem 1. Assume that f has the zeros & with multiplicity n; (i = 1, 2),
n1 + ns = n. Then we have

(—l)iai :Ti(gl,...,fl,fg,...,fg) (’L = 1,...,”),
S—— Y——

n1 n2

where 7; is the i-th fundamental symmetric function. Put

e = Y (”)(”>H i=1,....n).

i1 tia=i N1 2
Clearly,
(€1, .08, 8,0, 6) = fi(6, &) (i=1,...,n).
—_— ——

Since the number of decompositions n = ny + ng, where 1 < n; < ng is [%], it
suffices, by virtue of Lemma 1, to prove that for i,j € {1,...,n}, i # j there exists

no polynomial h € K|z, y] such that

(3) fi(may) = aih(may)i/da fj(xvy) = a’jh(xvy)j/d: d= (’Lv])

(the factors (—1)* and (—1)7 have been incorporated into h(z, y)*/% and and h(z, y)?/4,
respectively). Without loss of generality we may assume that i < j and ny < no.
We shall consider successively the following cases

(4) jgnla
(5) . S ny < j>
(6) ny <.

d
In the case (4) let h(z,y) = 3 bsz?%y°. We obtain from equations (3) that
§=0

n1 i/d ny Loi/d—1
<l> :albg/ 5 (’L—l)n2 :alabg/ b1

Hence by # 0 and on dividing side by side we get

in2 Zb1

np—i+1  dby

It follows that by # 0 and ny — i + 1 = dnabo/by. Similarly, ny — j + 1 = dnabo /b1
Hence ¢ = j, a contradiction.
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In the case (5) we have f;(z,y) Z0 (mod y), fj(z,y) =0 (mod y), hence (3) is
impossible.

In the case (6) f;(z,y) is divisible exactly by y*=", f;(x,y) is divisible exactly
by y/~™. So if h(z,y) is divisible exactly by y*, we obtain

i—nlzki/d, j—nlzkj/d,

(D) mes(e-2)

Since ny # 0, we get i = j, a contradiction.
Thus (3) cannot hold in any of the cases (4-6), and the theorem follows. O

and consequently,

To prove Theorem 2, we need a lemma.

u—1

Lemma 2. Let xz1,...,zq be unknowns, and write (”Z) = 1:[ (z; —j)/u! fori=
1,...,d and for any non-negative integer uw. Then we have
1 1
() (%) II (z;—i)
1 1) | 1<i<j<d
: ont...(d—1)! "

() ()

Proof. By a suitable multiplication and addition of rows the determinant reduces
to the Vandermonde determinant. [

Proof of Theorem 2. Let & be a zero of f of order at least m. If £ = 0, then the last
m coefficients of f are 0, hence there are at most n —m non-zero proper coefficients
of f and the assertion of the theorem is void. Hence assume that £ # 0. We have

@ o= (t)e ; ("7 ei=0 wsi<m

Assume that the a; are given for ¢ € I = {iy,9m+1,---,%n} and that

{1,,”}\[2 {il,...,imfl}.
We obtain from (7) that
® Sa <" - Z)&” = —<T.L>£” - Zm(" B Z)&” (0<j<m).
i¢1 J J el J

The solvability of this system of linear equations in a;£"~% (i € I) implies that the
following matrix (b,.) is singular
(") if 1<r<m, 1<s<m,

R I T ("Theri i 1<r<m, s=m.
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The equality det(b,.s) = 0 implies by Lemma 2, on omitting a double product which
is clearly different from zero, that

m—1 m—1
e IL is + > ase™  I] (s — i) = 0.
s=1 iel s=1

Hence ¢ is determined up to n possibilities and then the system (8) determines a;
(t¢gI). O

Proof of Theorem 3. Let 7; (i =1,...,n) be the i-th fundamental symmetric func-
tion of 1, ...,z,. We have by (1) that

(_l)la'l :Ti(§17“'7§17€27"'7527"'75/67"'75/6) (1 Slgk)
S—— —— S——

By the Newton formulae we obtain

bi :Ui(gla--wglaééa"'7527"'75/67"'75/6) (1 Slgk)a

ni n2 2

where o; is the sum of i-th powers and the b; are uniquely determined by the a;
(1 <4 < k). Thus setting

k
j=1

we obtain the system of equations

9) bi = fi(€r, ..., &) (1 <i<k).
The Jacobian

ofi
det (63:]- (&, ... ,gn)>

k
Zk!Hnj H (& —&) #0,
Lk

1., =1 1<i<j<k
- J <i<j<

i
J
hence the system (9) has only finitely many solutions in distinct &,...,& and by

Bézout theorem, the number of solutions is at most k! (cf. the Lemma in [5]).
Hence there are at most k! possibilities for f(z). O

Proof of Theorem 4. If the degree n of f is < 4, then the statement follows from
Theorems 1 and 2. Suppose that n = 5. Then, using again Theorems 1 and 2,
we may assume that f has exactly three zeros, of multiplicities 2,2, 1, respectively.
By a similar consideration, for n = 6 we obtain that either f has exactly three
zeros, of multiplicities 2,2,2 or 3,2, 1, respectively, or f has exactly four zeros of
multiplicities 2,2, 1,1, respectively. We give the proof only for n = 5, the cases
when n = 6 can be treated similarly.

Let the three zeros of f be &1, &5, &3, of multiplicities 2,2, 1, respectively. Then,
by factoring in K[z], we can write

(10)  f(x) =2° + ar2* + az2® + az2® + a4x + a5 = (v + by) (2% + boz + b3)2,
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with some by, b2, bs € K. (This step is important from the computational point of
view.) We show that by fixing any three of the coefficients a; (i = 1,...,5), there
are only finitely many possibilities for the b; (j = 1,2, 3), whence for &, &, &. We
consider only the case when a1,a3 and a; are fixed, the proof is similar in the other
cases.

By expanding (10), we get the system of equations

(11) b1 + 2b2 —a; = 0, blbg + 2b1b3 + 2b2b3 — a3 = 0, blbg — a5 = 0.

Taking the resultants of the first and second, and first and third of these equations
with respect to by, we get

(12) —2[)3 + alb% — 2bsbs + 2a1b3 —az3 =0 and — 2b2b§ + alb§ —as = 0.
Now taking the resultant of these two equations with respect to by, we obtain
8a1b% — 8asbS + 8asby + 2a’asbs — dayab3 + 2ai = 0.

By our assumption a; # 0. Hence there are at most 7 possibilities for b3. By the
third equation of (11), as a5 # 0, we have bs # 0. Hence, using the second equation
of (12), b2 is determined by the choice of b3. Now the third equation of (11) gives
that b; is also determined.

By a similar argument, and a tedious computation we get in every case that the
bj (j = 1,2,3) are determined up to finitely many possibilities. As we come to a
similar conclusion also when n = 6, the theorem follows. O

Proof of Theorem 5. If all the multiplicities of the zeros of f are divisible by [, then

f is an l-th power in Q[z], and the statement is trivial. Suppose that f has exactly
one zero of multiplicity not divisible by [. Then we can write

_ ; _ !

f@=2"4+az" ' +..  4an =@+ @bz b)),

with 1 <k <[, and with some ¢,by,...,b, € Q. We put z = 1/x to obtain

L4arz+...+ap2" =1 +t2)" (1 +biz+ ...+ bpz™),

whence

1 n
(13) \l/+alz+ AL NTIY S

(1+t2)"

We consider (13) as an equation concerning (real) generating functions (in z) of
certain series. Set

[ee]
(14) \71+G1Z+...+anz”:Zcizi.
i=0

Without loss of generality we may assume that cg = 1, whence ¢; € Q for i € N.
Moreover, by differentiation we get for all i > 1 that ¢; is linear in a;, and ¢; does
not depend on a; when 0 < j < i. On the other hand, a simple calculation gives

o0
(14t2)7/1 = Z sit'2t,
i=0
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with
i—1

8 = (—%)z w (1=0,1,2,...).

Comparing the coefficients of z™*! on the left- and right hand side of (13) and
using the facts that ¢ = 1, that ¢1,...,¢, are uniquely determined, and that
S1y-++ySmsSm+1 are known and s,,+1 7# 0, we obtain that ¢ is a zero of a polynomial
of degree m + 1 with rational coefficients. After fixing ¢, the coefficients b, (1 <r <
m) are uniquely determined by (13). As m = [(n — 1)/l] = (n — k)/l, the theorem
follows. O

Proof of the Proposition. From the course of the proof of Theorem 5, the statement
i) is clear. To prove the statement ii), we use that in (14) for every i € {1,...,n},
c; is linear in a;, and c¢; does not depend on a; when 0 < j < ¢. Hence fixing the
coefficients a; for i = 1,...,m+ 1 successively, it is easy to see that the polynomial
of degree m + 1 determining ¢ can have m + 1 distinct rational zeros. Thus we may
obtain m + 1 different values for ¢t. Hence, as ay, ..., am+1 are fixed, by (13) we get
also m + 1 different values for (by,...,by) and for (ami2,...,a,). O

To prove Theorem 6, we need some lemmas.
Lemma 3. Let t1,ts,a € R. Put p(z) =1 — t12 + t22? and q(z) = (p(2))*. Then

for every non-negative integer r we have
oor—i—1 .
/o) tar! JI (@ =)
(r) — Jj=0 a—r4if 1 r—2i
1) = 3 g ) )
where ¢ denotes the r-th derivative of g.

Proof. We proceed by induction on r. One can easily check the statement for r = 0.
Write

r—i—1
tyr! 1 (=)
j=0
il(r — 2i)!
for r > 0 and 0 < i < [r/2], and suppose that the lemma is true for some r. Then
we have

c(i,r) =

!

[r/2]
T . a—r+1i r—2i
¢t (z) = [ Y el ) () TP ()
i=0
Thus to prove the statement, it is sufficient to verify that
(Cl - T)C(O) T) = C(O) T+ 1);
2t2(r —2(i — 1))e(i — 1,7) + (@ = r+ i)e(i,r) = c(i,r+1) for i=1,...,[r/2],
and

0, if r is even,
2y (r — 2[r/2 90, r) =
2(r = 20r/2)ellr/2],7) { c((r +1)/2),r +1), ifris odd.
However, these equalities can be checked by a simple calculation, and the lemma
follows. 0O
h
If h is any positive integer, then as usual, we put (2h — 1)!! = J](2i — 1).
i=1
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Lemma 4. Let ty,t2 be arbitrary rationals, and let G,.(t1,t2) (r =0,1,2,...) be the
sequence having the generating function (1 —t1z + 752,2'2)71 % in z, with Go(t1,t2) =
1. Then for every r we have
[r/2]
Gr(tlytZ) = Z
i=0
Proof. Put p(z) =1 —t12 + t32® and a = —1/2. By p(0) = 1 and p'(0) = —t1, the
statement easily follows from Lemma 3. O

(=1)'@(r —i) = !

o r—24,1
2r=igl(r — 2i)! bt

Remark 3. It is well-known (see e.g. [3] p. 10) that the generating function of
the Dickson polynomials of the second kind

2N
(e

up(ty,ta) =
i=0

is given by (1 —t12z + 7522'2)71 (in z). Hence the above polynomials G,.(t1,t2) are

closely related to the Dickson polynomials.

Lemma 5. The polynomials G.(t1,t2) defined in Lemma 4, for v > 0 satisfy the

recursive formula

2r 4+ 3 r+1
Gria(ti,t2) =

——t1Gra(t1, t2) —
o 4l r1(t1, t2) rt2

t2Gr(t1,t2).

Proof. Using the explicit forms of the polynomials G,.(t1, t2) given in Lemma 4, the
statement can be easily checked by induction. O
In what follows, the resultant of 71, T> € Qu,v] with respect to v will be denoted
by Resv (Tl, TQ)
Lemma 6. Let d be a non-negative integer, and let P, € Qu,v] be given by
[d/2] o [(d+1)/2] o
P(u,v) = Zpiudfmv’ and  Q(u,v) = Z qiu®H =2yt
i=0 i=0

Then Res,(P, Q) is either identically zero, or it is a monomial of degree d(d+1)/2
mu.

Proof. We prove the statement only for d even, the case when d is odd can be
treated in a similar way. For d even the resultant Res, (P, Q) is a constant multiple
of the determinant

P pa—zu? p%u4 pou? 0 0 0 0
0 % p% U,2 %U, p()ud 0 0
0 0 pe  pazu’ pasut L pou? 0
2 2
0 0 0 0 Py Pa—zu> p%u4 pou?
qau q%zﬁ q%u‘r’ qoudt! 0 0 0
0 qau q%u3 qasu qout! 0 0
0 0 qgu  qazeu Q#’lﬁ qoult? 0 0
0 0 0 0 qau Qo2 u?  qa_au® goudt!
2
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of size d x d. Multiply each row of the above determinant by an appropriate power
of u such that for every r with 1 < r < d, in each entry of the r-th column

the exponents of u become 2r — 1. To obtain this form, we have to multiply the
d(d

determinant by u— = = altogether. Then again for every 1 < r < d, we take out
2
u?"~1 from the r-th column. Altogether we take out u? . After this process we
d(d
obtain that the original determinant is just a constant multiple of u =3 1), and the

lemma is proved. O

Proof of Theorem 6. Suppose that f has at most two zeros of odd multiplicities.
By Theorem 5 we may assume that n is even and f has exactly two zeros of odd
multiplicities. In this case f can be written in the form

2
f@x)=2"4az" ' +.. ta, = (@ —tiz+t) (™ +b12™ .+ by 1T+ D)

where n = 2m + 2, with some rational numbers t1,t2,b1,...,by,. Put z = 1/z to
obtain

l+a1z4+...4+a,2"=(1 —tlz+t2z2)(1+blz+...+bmzm)2,

which yields

=14+biz+...+bnpz"

(15) \/1+a12+...+anz"

1-— tlz + t222

We consider (15) as an equation of (real) generating functions (in z) of certain
series. Set

oo
Vi+taz+...+a,2" = Zc,z’
1=0

Without loss of generality we may assume that ¢y = 1, whence ¢; € Q for every
1 € N. Lemma 4 gives

oo [Ir/2] i .
o\—1/2 _ (D)= =D 5 r
(I-tiz+t2%) 7" = 2% D s LR ]
r= =0
Put o/
r/2 ;
D)2 —i)—-D" 5
Gr(u,v) = Z ( Q)TEiz'(!(r —)Qi)! ) u"*v' (reN),
i=0
and let

m—+1 m—+2

Hy(u,v) = Z Cm+1—iGi(u,v), Ha(u,v) = Z Cm+2—iGi(u,v).
=0 =0

As Hi(t1,t2) and Hy(t;,ts) are just the coefficients of 2™t and z™*2 on the left
hand side of (15), respectively, we have H; (t1,t2) = Ha(t1,t2) = 0. Let

H(u) = Resy, (Hy(u,v), Ha(u,v))
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and

G(u) = Resy(Grnt1 (w,v), Gy2(u, ).

Using ¢y = 1 and the determinant form of the resultant, we see that the coefficients
Ly and Lg of u™ 5™ (the highest power of u that could occur) in H(u) and
in G(u), respectively, are equal.

We now prove that Lg # 0. Lemma 6 implies that G(u) is either identically

zero, or it is a monomial of degree (m + 1)(m + 2)/2. Thus
Le=0 < G(u) =0.
However, combining Lemma 5 with the fact that
Res, (G1,G2) = (1/2)u,

we get by induction that Res,(Gmt1,Gma2) Z0. Hence Ly = Lg # 0. Thus ¢ is
a zero of the non-zero polynomial H(u) of degree (m + 1)(m + 2)/2. Having such
a t1, we substitute it into Hj(u,v) or Ha(u,v), according to that m + 1 or m + 2
is even. In this way we obtain a polynomial of degree at most [(m + 2)/2], such
that ¢t must be a zero of it. Thus there are at most [(m + 2)/2](m + 1)(m + 2)/2
possible pairs (¢1,t2). As for any fixed (¢1, t2) the coefficients by, . . ., b, are uniquely
determined by (15), the theorem follows. O

We need the following lemma to prove our Corollary. This result is a simple
consequence of a theorem of Brindza (see [1]).

Lemma 7. Let b and | be integers with | > 2, and F € Q[z] a polynomial. Let
ai,...,qp be the zeros of F, and denote by h; the multiplicity of a; (i =1,...,71).
Put ¢; =1/gcd(l,h;) (i = 1,...,7). Suppose that (q1,...,q-) is not a permutation
of either of the r-tuples (¢,1,1,...,1) and (2,2,1,1,...,1). Then the equation

F(z) = by

has only finitely many solutions x,y € 7Z, and these solutions can be effectively
determined.

Proof of the Corollary. By Theorems 5 and 6, there are at most N polynomials
g(x) € Q[z] of degrees less than n — m — €, for which the polynomial f(x) + g(x)
has at most € zeros of multiplicities not divisible by [. Moreover, the exceptional
polynomials g(z) can be effectively determined. Thus the statement follows from
Lemma 7. O
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