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Abstract. In this paper we propose a method using a generalization of
the weighted majority voting scheme to locate the optic disc (OD) in
retinal images automatically. The location with the maximal sum of the
weights of OD center candidates falling into a disc of radius predefined
in the clinical protocol is chosen for optic disc. We have worked out a
weighted voting scheme, where besides the weights, an additional (e.g.
geometrical) condition have to be taken into account in making the final
decision. We can achieve better overall performance with this generalized
weighted voting system than with the weighted majority voting and each
individual algorithm.
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1 Introduction

Diabetic retinopathy (DR) is an eye disease (damage to the retina) that is the
most frequent cause of new cases of blindness. In automatic grading of the retinal
images and in making diagnosis, determining the exact location of the main
anatomical features (e.g. the optic disc and the macula) is among the first steps.
Both the optic disc and the macula can be considered as a circular region (disc)
on the retinal images. The optic disc is very bright, while the macula is a highly
pigmented spot whose center is called fovea which is responsible for the sharpest
vision.

In our approach, we organize several different individual OD detector algo-
rithms into a weighted voting system to raise the accuracy of the OD detection
([1],[2]). Each OD algorithm results in a single pixel as output for the OD center.
In our application for the OD detection, the majority voting cannot be applied
directly since the spatial replacement of each vote also counts in making the final
decision. In the generalized weighted voting system, the OD center candidate of
each detector has been combined and the minimal bounding circles for all subg-
roups of the candidates are considered. The radius of the circle must be less
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than or equal to the radius of the optic disc that is a clinically predetermined
constant. In this weighted voting system we choose the circle with the maximal
sum of the weights assigned to the candidates falling inside this circle.

Fig. 1. Results of the different OD detecting algorithms

Weighted majority voting is widely examined in the literature (see e.g. [3],
[4]). For characterizing the accuracy of the weighted system to our application
a corresponding theoretical model is needed. If we consider the bounding circle
with the maximal weight sum, then similarly to a traditional weighted majority
setup, we can make a good decision even in the case when the bad candidates
have pure majority in number. In our former work [5], we have generalized the
classical majority voting to our problem. Now, just as in the traditional case, we
check how weighted majority can outperforms classical majority voting. In the
non-weighted generalized voting system bad decision can be made only when a
subset of bad candidates with larger cardinality than the number of good ones
can be bounded by a circle with an appropriate radius such as in the case shown
in Fig. 1. In the weighted generalized voting system we make a wrong decision
only in that case when a subset of bad candidates having larger sum of weights
than the sum of weights assigned to the good ones can be bounded by a circle
with an appropriate radius. In the case demonstrated in Fig. 1. good decision is
made applying the weighted generalized voting system.

These observations motivated us to work out a corresponding theoretical mo-
del, where bad votes can overcome good ones only if a further (e.g. geometrical)
condition is fulfilled. This additional condition is the spatial closeness of the
candidates in the above application. With this model we generalize the classical
non-weighted and weighted majority voting scheme, since in the case of less good
votes we may make a good decision. This generalized method can be applied to
several problems corresponding to spatial location with additional constraints
(e.g. detecting a certain pixel or region).

In the rest of the paper, section 2 presents the classical voting system. In
section 3 we recall our results for the generalization of the non-weighted voting
system, while section 4 discusses the weighted majority voting and our gene-
ralized weighted system. In section 5, our experimental results for the specific
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OD detection application are presented. Section 6 gives conclusion and further
recommendations.

2 Majority voting

Let D = (D1, D2, . . . , Dn) be a set of classifiers, Di : Rk → Ω (i = 1, . . . , n)
where Ω = (ω1, ω2, . . . , ωc) is a set of class labels. If the classifier decisions are
combined in the majority voting, then the class label ωi is assigned to x that is
supported by the majority of the classifiers Di. In the case of a tie, the decision
is usually made randomly.

As a special case, we can consider binary classifiers examined exhaustively
in the literature. Let n(n ∈ N) be odd, Ω = (ω1, ω2) (that is, each classifier
output is a binary vector) and all classifiers have the same classification accuracy
p(p ∈ [0, 1]). An accurate class label is given by the majority vote if at least [n/2]
classifiers give correct answers. The overall accuracy of correct classification in
majority voting with independent classifier decisions can be computed by the
binomial formula:

P =
[n/2]∑

k=0

(
n

k

)
pn−k(1− p)k. (1)

If the classifiers are independent and p > 0.5, then this method is guaranteed
to outperform the individual classifiers. Applying the majority voting in pattern
recognition, several interesting results can be found in [6] (e.g. about adding one
or two new classifiers to the voting system).

3 The generalized majority voting

The classifiers making independent errors are generally considered independent,
so under this assumption, the error of the classifiers can be modelled by random
variables and their distributions. If we assume initially equal probabilities of
errors for all classifiers, the model with Bernoulli distribution is the simplest
and for this case the most appropriate one.

In this section, we recall and slightly re-formulate the theoretical and experi-
mental results for the generalized majority voting system [5]. Let η = (η1, . . . , ηn)
be an n-dimensional random variable (n classifiers). Assume that the coordinates
ηi of η are independent random variables with

P (ηi = 1) = p, P (ηi = 0) = 1− p (i = 1, . . . , n) , (2)

where p ∈ [0, 1] (each classifier has the same accuracy p). Execute the experiment
η independently t times (t objects to be classified), and write the outcomes
(outputs of the classifiers) in a table of size n× t. The j-th column of the table
contains the realization of η in the j-th experiment (j = 1, . . . , t). Define now
the random variables χ1, . . . , χt in the following way: if in the j-th column there
are k 1 values (k correct classification for the j-th object) then let

P (χj = 1) = pnk, P (χj = 0) = 1− pnk (j = 1, . . . , t) , (3)



4 H. Toman, L. Kovacs, A. Jonas, L. Hajdu, A. Hajdu

where the pnk-s (k = 0, 1, . . . , n) are given numbers with monotone increasing
property fulfilled in all rows: 0 ≤ pi0 ≤ · · · ≤ pii ≤ 1 (i = 1, . . . , n) . The
pnk describes the probability of the good final decision in case of k correct
classifications from n classifiers.

Observe that the χj-s are independent. Finally, put ξ = |{j : χj = 1}| ,
that is, ξ is the number of the good final decisions for t objects. We observe that
all the individual decisions ηi (i = 1, . . . , n) are of binomial distribution with
parameters (t, p). Then we get that ξ has also binomial distribution, with the
appropriate parameters (t, q), where

q =
n∑

k=0

pnk

(
n

k

)
pk(1− p)n−k. (4)

In order to the generalized majority voting outperform the individual decisions,
we need only to guarantee that q ≥ p .

In that case when pnk is linear in k for a given n, that is pnk = k/n (k =
0, 1, . . . , n), then we get q = p.

(a) The curve of pnk (b) System accuracy

Fig. 2. The results of the linear case

If we suppose that pnk ≥ k/n for all k = 0, 1, . . . , n, then q ≥ p, so in this
case the generalized majority voting outperforms the individual decisions.

As a special case of the generalized majority voting, when n is odd, p ≥ 1/2
and for all k = 0, 1, . . . , n we have pnk = 1, if k > n/2, and pnk = 0, otherwise,
we get the classical majority voting.

We indicate the overall performance P of the voting system in Fig. 2. and Fig.
3. for different L number of classifiers/algorithms at different classifier accuracies
p in the linear case when pnk = k/n and in the classical majority voting case,
respectively.

We give another example of the matrix pnk that is motivated by our appli-
cation for OD detection. In this case, the behavior of pnk as a function of k for
a fixed n and the system accuracy are illustrated in Fig. 4.

From Fig. 4. we can see, that for a fixed n, pnk increases exponentially in
k. This follows from the results of [7] about the diameter d of a point set. The
probability that d is not less than a given constant decreases exponentially if the
number of points tends to infinity. Note that, this diameter corresponds again
to the radius of the OD defined by the clinical protocol.
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(a) The curve of pnk (b) System accuracy

Fig. 3. The results of the classical majority voting scheme

(a) The curve of pnk (b) System accuracy

Fig. 4. The results of our application for OD detection

4 Modifications on the decision rule

In this section, we modify the final decision rule of the ensemble which will
result in further improvement of the system accuracy. Our generalization is based
on the assignment of weights to the ensemble members (classifiers). First, we
recall the necessary procedure for finding the weights in classical majority voting
(see e.g. [4]). Then, we derive how the optimal weights can be found for our
generalized voting case.

4.1 Weighted voting system

For weighted voting system, first let us consider the classifiers (D1, D2, . . . , Dn)
with accuracies (p1, p2, . . . , pn), respectively. Then, let di,j be defined in the
following way: di,j = 1, if the classifier Di labels x in the class ωj , and di,j = 0,
otherwise. In case of weighted voting, the discriminant function for class ωj is
given as:

gj(x) =
n∑

i=1

bidi,j , (5)

where the weight bi corresponds to the classifier Di. Note that the following
discriminant functions are equivalent for the given decision rule:

gj(x) = P (s|ωj)P (ωj), gj(x) = log(P (s|ωj)P (ωj)), (6)

where s = [s1, . . . , sn] is the vector with the label output of the ensemble. Here
si ∈ Ω is the label suggested for x by the classifier Di and P (ωj) is the prior
probability for class ωj .
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In a weighted majority voting system, the class label ωk is chosen for x if

gk(x) = max
j=1,...,n

gj(x) =
n∑

i=1

bidi,k. (7)

In a weighted majority system a natural question is that how to choose the
optimal weights for the classifiers. If we consider independent classifiers , then
the system accuracy is maximized by assigning weights (see e.g. [4]):

bi ∝ log
pi

1− pi
, i = 1, . . . , n. (8)

Note that, conditional independence is assumed here, that is:

P (s|ωj) =
n∏

i=1

P (si|ωj), (9)

where s = [s1, . . . , sn] is the same as above.

The weights bi ∝ log pi

1−pi
do not guarantee the minimum classification error,

because the prior probabilities for the classes P (ωj) have to be taken into ac-
count, too. More precisely, if the individual classifiers are independent, and the
a priori likelihood is that each choice is equally likely to be correct, then the
decision rule that maximizes the system accuracy is a weighted majority voting
rule obtained by assigning weights bi ∝ log pi

1−pi
.

In contrast to the classical majority voting, we equip each classifier output
with different weights bi, where 0 ≤ bi ≤ 1 (i = 1, . . . , n). It seems natural to
give the classifiers with larger accuracies larger importance in making the final
decision. Note that the classical majority voting scheme can be considered as a
special case of the weighted voting system since in the majority rule the weight
of each vote given by a classifier is constrained to be bi = 1 for all i = 1, . . . , n.

4.2 Generalized weighted voting system

We can also assign weights to the classifiers within our generalized voting scheme
presented in section 3. If we consider the classifiers (D1, D2, . . . , Dn) with res-
pective accuracies (p1, p2, . . . , pn) and weights b1, . . . , bn, then the final decision
is made by choosing the maximal sum of weights, where some additional constra-
ints (e.g. a geometrical one for OD detection) have to be fulfilled by the classifier
outputs. Let us consider the probability (1 − pi)ri with ri ∈ [0, 1] for the i-th
classifier that means that the i-th classifier makes wrong classification and par-
ticipates in making a bad decision.

In our application, we choose the maximal sum of those weights of the algo-
rithms whose outputs can be bounded by a circle with an appropriate radius.
An algorithm takes part in making a bad decision if its output falling outside
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the optic disc meets other bad candidates. For the algorithm Di with accuracy
pi giving a bad candidate (xi, yi) for the optic disc, we consider that the distri-
bution of (xi, yi) is uniform outside the optic disc for all i (i = 1, . . . , n). In this
case, we have:

r1 = . . . = rn =
T0

T − T0
, (10)

where T0 and T are the area of the optic disc and the ROI (whole useful
image domain), respectively, so ri is the same predetermined constant for all
i (i = 1, . . . , n). For better understanding, see Fig. 5., where we show how bad
candidates can fulfil the geometric constraint by falling inside a disc with OD
radius.

Fig. 5. Retinal image and a schematic one with the used notation

The next theorem gives the answer on how to select the weights in our gene-
ralized weighted majority voting model.

Theorem 1. If independent classifiers (D1, D2, . . . , Dn) are given (conditional
independence is assumed), then the optimal weight bi for the classifier Di with
accuracy pi can be calculated as:

bi ∝ log
pi

(1− pi)2ri(1− ri)
. (11)

Proof. Let s = [s1, . . . , sn] denote the vector with the label output of the en-
semble, where si ∈ Ω is the label suggested for x by the classifier Di. A Bayes-
optimal set of discriminant functions based on the outputs of the n classifiers
is

gj(x) = log P ((ωj)P (s|ωj)), (j = 1, . . . , c). (12)
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From the conditional independence, for the discriminant functions gj(x) we get

log P (ωj)P (s|ωj) = log

[
P (ωj)

n∏

i=1

P (si|ωj)

]
= (13)

log P (ωj) + log


 ∏

i,si=ωj

P (si|ωj)
∏

i,si 6=ωj

P (si|ωj)


 = (14)

log P (ωj) + log


 ∏

i,si=ωj

pi

∏

i,si 6=ωj

(1− pi)ri

∏

i,si 6=ωj

(1− pi)(1− ri)


 = (15)

log P (ωj) + log


 ∏

i,si=ωj

pi(1− pi)
1− pi

∏

i,si 6=ωj

(1− pi)ri

∏

i,si 6=ωj

(1− pi)(1− ri)


 =

(16)

log P (ωj) + log


 ∏

i,si=ωj

pi

1− pi

∏

i,si 6=ωj

(1− pi)ri(1− ri)
n∏

i=1

(1− pi)


 = (17)

log P (ωj) +
∑

i,si=ωj

log
pi

1− pi
+

∑

i,si 6=ωj

log((1− pi)ri(1− ri)) +
n∑

i=1

log(1− pi).

(18)

The last term does not depend on the class label j so we can reduce the discri-
minant function to

gj(x) = log P (ωj) +
∑

i,si=ωj

log
pi

1− pi
+

∑

i,si 6=ωj

log((1− pi)ri(1− ri)) = (19)

log P (ωj) +
n∑

i=1

di,j log
pi

1− pi
+

n∑

i=1

(1− di,j) log((1− pi)ri(1− ri)) = (20)

log P (ωj) +
n∑

i=1

di,j log
pi

(1− pi)2ri(1− ri)
+

n∑

i=1

log((1− pi)ri(1− ri)). (21)

The last term of the summation is also independent from the class label j so
it can be omitted. If we consider the equations:

gj(x) = log P (ωj) +
n∑

i=1

di,j log
pi

(1− pi)2ri(1− ri)
, (22)

and

gj(x) =
n∑

i=1

bidi,j , (23)

we get that the weights:

bi ∝ log
pi

(1− pi)2ri(1− ri)
(24)
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that are supposed to maximize the system accuracy.

Note that, similarly to classical majority voting, the weights given in (24)
do not always guarantee the minimum classification error. Only if the individual
classifiers are independent and the prior probabilities for the classes P (ωj) are
equal, the decision rule that maximizes the system accuracy is a weighted ma-
jority voting rule, obtained by assigning the above weights.

4.3 Weighted majority voting in OD detection

In our application, the output of each OD detecting algorithm is the OD center
given as a single pixel with coordinates (x0, y0). In our ensemble-based system
we have the set of class labels {ω(x,y)|(x, y) ∈ ROI}. For an OD detector (as
a classifier) with its output (x0, y0), the class label ω(x0,y0) is assigned to the
detector. In other words, the classifier voted to the pixel (x0, y0) as OD center.
The classification is considered to be correct if the output (x0, y0) falls inside the
true optic disc on the retinal image. We can define the decision rule as the sum
of the weights of the OD detecting algorithms, whose outputs can be bounded
by a circle of the OD radius. Such a circle with the maximal sum of weights is
accepted as the final decision for the OD.

In this application, the condition for the equal prior probabilities for the
classes is fulfilled if we suppose uniform distribution of the candidates both
inside and outside the optic disc.

In contrast to the non-weighted systems, less conflicting situations can be
obtained when the decision is not exact because of the equal number of outputs
falling inside the discs of the predetermined radius. Further improvement of
this weighted system on majority voting is that there is no need for accuracy
constraints p > 0.5 on individual algorithms to achieve larger system accuracy.
It can be shown that this weighted voting rule always outperforms the classical
majority rule because in case of a conflict (when the same number of votes are
densified in different discs of a given radius) majority rule decides randomly
between the disc candidates, while the weighted voting system can handle the
conflict determining to the sum of the weights corresponding the output votes
falling inside the discs.

5 Experimental results

We compare the system accuracies of the classical and the weighted majority
voting for different accuracies and different weights. In our tests, we considered
three different types of accuracies for the algorithms:

• A1 : p1 = p2 = . . . = p9 = 0.6,
• A2 : pi = 1− 0.1i, i = 1, . . . , 9,
• A3 : p1 = 0.6472, p2 = 0.9765, p3 = 0.3205, p4 = 0.7593, p5 = 0.3153,

p6 = 0.2276, p7 = 0.9582, p8 = 0.7671, p9 = 0.6432.
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The case A1 is often examined in the literature with equal weights, A2 is
a theoretical example, while A3 contains true accuracies of OD detecting al-
gorithms measured on the Messidor test database [9] containing 1200 retinal
images.

For comparative studies, we apply the following weights bi for the i-th algo-
rithm having accuracies pi (i = 1, . . . , 9):

• B1 : bi = pi,
• B2 : bi = log pi

1−pi
,

• B3 : bi = pi

(1−pi)2ri(1−ri)
.

That is, in case B1 each weight is equal to the accuracy of the individual
algorithm (such as taken the i-th algorithm with accuracy pi, then it participates
in the final decision with weight bi = pi). B2 is suggested as optimal for the
classical weighted majority voting, while B3 is the proposed assignment for our
generalized weighted majority voting. In this way, we give a practical example
to confirm the theoretical derivation of the optimal weights given in section 4.2.

We apply OD detecting algorithms as classifiers, so we can test and compare
the overall performance of the different voting systems on classifier output gene-
rated artificially. In lack of independent OD detecting algorithms providing these
accuracies, we are not able to test and compare the voting systems on retinal
images. We generate the classifier outputs in the following way: we consider a
disc of radius R (ROI) and a disc of radius R0 inside the ROI (optic disc), where
R = 712 and R0 = 48 pixels, respectively. We generate 9 output points with
coordinates (xi, yi) (as outputs the Di’s), where the probability that the point
(xi, yi) falls inside the optic disc is pi and the distribution of (xi, yi) is uniform
outside the optic disc. Now, the probability ri (i = 1, . . . , 9) can be determined
as:

r1 = . . . = rn =
T0

T − T0
=

R2
0

R2 −R2
0

. (25)

In this test we compare the performance of the following voting systems:
MV- majority voting, WMV- weighted majority voting, GMV- generalized ma-
jority voting, WGMV- weighted generalized majority voting. The system accu-
racies for the individual accuracy setups A1, A2, A3 with the weight assignments
(B1, B2, B3) are given in Fig. 6(a)., Fig. 6(b)., Fig. 6(c)., respectively.

From the tables we can see that if all weights are equal, then it naturally re-
sults in the same system accuracy as the non-weighted voting scheme, otherwise,
weighted voting outperforms non-weighted voting. Our generalized non-weighted
(weighted) voting system has better overall performance than the classical non-
weighted (weighted) majority voting scheme.

For the OD detection application, we can test and compare our generalized
non-weighted and generalized weighted voting system on a real database of re-
tinal images, as well. The Messidor dataset [9] considered for this aim contains
1200 retinal images. In this test, we assigned the optimal weights derived in
section 4.2 to the participating algorithms (classifiers) having individual accu-
racies p1 = 0.6472, p2 = 0.9765, p3 = 0.3205, p4 = 0.7593, p5 = 0.3153, p6 =
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A
1

MV WMV GMV WGMV

B
1

0.7323 0.7323 0.9948 0.9996

B
2

0.7380 0.7380 0.9941 0.9991

B
3

0.7326 0.7326 0.9948 0.9989

(a) System accuracies for the set A1

A
2

MV WMV GMV WGMV

B
1

0.5012 0.8066 0.9889 0.9943

B
2

0.4965 0.9688 0.9901 0.8712

B
3

0.5009 0.7289 0.9877 0.9951

(b) System accuracies for the set A2

A
3

MV WMV GMV WGMV

B
1

0.8241 0.9526 0.9996 1.0000

B
2

0.8260 0.9926 0.9989 0.9941

B
3

0.8258 0.9481 0.9989 0.9998

(c) System accuracies for the set A3

Fig. 6. Overall system accuracies for the set of classifier accuracies

0.2276, p7 = 0.9582, p8 = 0.7671, p9 = 0.6432 (as given in case A3). However,
note that we have no information about the dependencies among these algo-
rithms. Despite the unknown dependencies of the algorithms, we found that
weighted majority voting with its system accuracy 0.98 outperformed classical
majority voting (system accuracy 0.974), and also all the individual accuracies.

6 Conclusion and future plans

We have introduced a new theoretical model that enables the investigation of
majority voting systems being more general than the classical majority voting
scheme. As for practice, we apply this generalization to set up ensemble of al-
gorithms providing spatial output. This generalized voting system (when some
additional geometrical constraints have to be fulfilled) can be applied in that case
when weights are assigned to the classifiers, as well. In our specific application,
larger overall system accuracy is achieved, than in the case of individual algo-
rithms and weighted voting outperformed the non-weighted one. Same results
can be expected for similar image processing problems, where the algorithms
vote with a single pixel or region. In our application, adding a new independent
algorithm to the system seems to be very effective because of the exponential
behavior of the system accuracy. The full characterization of the participating
algorithms to achieve the best system performance is still an open issue.
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A further issue regarding for the accuracy of the system is the dependence
of the algorithms. Though this paper concentrates on the independent case, it
can be shown that the accuracy can drop/raise based on the dependencies of
the algorithms similarly to the majority voting case [8]. To tune our system,
it will be a future research direction to see how the accuracy can be raised
by removing/adding algorithms from/to the existing system in consideration to
individual accuracies and dependencies.
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