
Handout I - Mathematics II

The aim of this handout is to briefly summarize the most important
definitions and theorems, and to provide some sample exercises. The
topics are discussed in detail at the lectures and seminars. Students
should also consult the suggested readings.

1. Derivatives of real functions

1.1. Theory.

Definition 1.1. Let f : D → R be a function, where D is an interval,
and let x0 ∈ D. If the limit

lim
x→x0

f(x)− f(x0)

x− x0

exists then we say that f is differentiable at x0. In this case we write

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

for the derivate of f at x0. If f is differentiable for all x0 ∈ D then we
say that f is differentiable. We write f ′ for the derivative of f .

Theorem 1.1. Suppose that f(x) and g(x) are differentiable functions
for all x ∈ R. Then we have

(f(x) + g(x))′ = f ′(x) + g′(x), (f(x)− g(x))′ = f ′(x)− g′(x),

(cf(x))′ = cf ′(x) (c ∈ R), (f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x),(
f(x)

g(x)

)′

=
f ′(x)g(x)− f(x)g′(x)

g2(x)
, (f(g(x)))′ = f ′(g(x)) · g′(x).

Theorem 1.2. All the elementary functions are differentiable. Fur-
ther, we have

c′ = 0 (c ∈ R), (xα)′ = αxα−1 (α ∈ R),

(ax)′ = ax ln(a) (a > 0), (ex)′ = ex,

(loga(x))
′ =

1

x ln(a)
, (ln(x))′ =

1

x
,

(sin(x))′ = cos(x), (cos(x))′ = − sin(x),

(ctg(x))′ = − 1

sin2(x)
, (tg(x))′ =

1

cos2(x)
, (arctg(x))′ =

1

1 + x2
.

Here arctg(x) is the inverse of the function tg(x) : (−π/2, π/2) → R.
1
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1.2. Sample exercises.

Exercise 1.1. Differentiate the following functions:

2(x5 −
√
x), exsin(x),

5
√
x− cos x

x2 + ln x
, ln(sin(x)).

Exercise 1.2. Differentiate the following functions:(
2x cos(cos(x2))− x2 + x

ln(
√
x) +

√
ln(x)

)3

, ex
2 sin(3x).

Throughout this material all functions f are assumed to be elemen-
tary functions, with f : D → R, where D is an interval.

2. Analysis of real functions

2.1. Theory.

Definition 2.1. Let f be a function and x0 ∈ D. If there exists an
ε > 0 such that for all x ∈ D ∩ (x0 − ε, x0 + ε) we have

• f(x0) ≤ f(x), then f has a local minimum at x0,
• f(x0) < f(x), then f has a strict local minimum at x0,
• f(x0) ≥ f(x), then f has a local maximum at x0,
• f(x0) > f(x), then f has a strict local maximum at x0.

In any of the above cases we say that f has a local extremum at x0.

Definition 2.2. Let f be a function. If for all x, y ∈ D with x < y we
have f(x) ≤ f(y), then we say that f is monotone increasing.

If for all x, y ∈ D with x < y we have f(x) ≥ f(y), then we say that
f is monotone decreasing.

Definition 2.3. Let f be a function. If for all x, y ∈ D and λ ∈ [0, 1]
we have λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y), then we say that f is
convex on D. If −f is convex on D, then we say that f is concave on
D.

Let x0 ∈ D. If for some ε > 0, f is convex on (x0 − ε, x0) and
concave on (x0, x0 + ε), or vice versa, then x0 is called an inflection
point of f .

Theorem 2.1. Suppose that f has local extremum at some x0 ∈ D.
Then we have f ′(x0) = 0.

Theorem 2.2. Suppose that x0 ∈ D, and f ′(x0) = f ′′(x0) = · · · =
f (n)(x0) = 0, but f (n+1)(x0) ̸= 0. If n + 1 is even, then f has a
local extremum at x0. Further, if f (n+1)(x0) < 0 then f has a local
maximum at x0, and if f (n+1)(x0) > 0 then f has a local minimum at
x0, respectively. On the other hand, if n+1 is odd, then f has no local
extremum at x0.
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Theorem 2.3. Suppose that f ′(x) ≥ 0 for all x ∈ D. Then f is
monotone increasing on D.

Theorem 2.4. Suppose that f ′(x) ≤ 0 for all x ∈ D. Then f is
monotone decreasing on D.

Theorem 2.5. Suppose that f ′′(x) ≥ 0 for all x ∈ D. Then f is convex
on D.

Theorem 2.6. Suppose that f ′′(x) ≤ 0 for all x ∈ D. Then f is
concave on D.

2.2. Sample exercise.

Exercise 2.1. Let f : R → R be defined by f(x) = x3 − 3x. Give
the complete analysis of f , that is: determine the zeroes of f ; calculate
the limits lim

x→−∞
f(x) and lim

x→∞
f(x); determine the local extrema of f ;

determine the intervals where f is monotone; determine the intervals
where f is convex/concave, and give the inflection points of f .

3. L’Hospital’s rule

3.1. Theory.

Theorem 3.1. Let f, g be two functions, such that g(x) ̸= 0 (x ∈ D).
Further, assume that either lim

x→x0

f(x) = lim
x→x0

g(x) = 0, or lim
x→x0

f(x) =

±∞, lim
x→x0

g(x) = ±∞, where x0 ∈ D, or x0 is an endpoint of D

(possibly x0 = ±∞). Then we have

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
,

if the latter limit exists.

3.2. Sample exercises.

Exercise 3.1. Calculate the following limits:

lim
x→0

sinx

x
, lim

x→∞

x

ex
, lim

x→0
x lnx.

4. Taylor polynomial, Taylor series

4.1. Theory.

Definition 4.1. Let f : [a, b] → R be a function differentiable n
times. Then the Taylor polynomial of order n of f(x) around a point
x0 ∈ (a, b) is given by

Tn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k.

If x0 = 0 then the above polynomial is called the MacLaurin polynomial
of f(x) of order n.
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Theorem 4.1. Let f : [a, b] → R be a function differentiable n + 1
times. Then we have

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1,

where ξ is a number between x and x0, depending on x.

Definition 4.2. Let f : [a, b] → R be a function differentiable infinitely
many times. Then the Taylor series of f(x) around a point x0 ∈ (a, b)
is given by

T (x) =
∞∑
k=0

f (k)(x0)

k!
(x− x0)

k.

If x0 = 0 then the above series is called the MacLaurin series of f(x)
of order n.

4.2. Sample exercises.

Exercise 4.1. Give the Taylor-series of the functions

x3 + 2x2 − x+ 3, ex, sinx, cos x.

5. Primitive functions, indefinite integral

5.1. Theory.

Definition 5.1. Suppose that we have F ′(x) = f(x). Then we say that
F (x) is a primitive function of f(x).

Theorem 5.1. Let F (x) be a primitive function of f(x). Then G(x)
is a primitive function of f(x) if and only if G(x) = F (x) + c is valid
with some c ∈ R.

Definition 5.2. The set of primitive functions of f(x) is called the
indefinite integral of f(x). Notation:

∫
f(x)dx = F (x) + c (c ∈ R),

where F (x) is a primitive function of f(x).

Theorem 5.2. We have∫
(f(x)± g(x))dx =

∫
f(x)dx±

∫
g(x)dx

and ∫
λf(x)dx = λ

∫
f(x)dx (λ ∈ R).

Theorem 5.3. We have∫
xαdx =

xα+1

α + 1
+ c (α ̸= −1),

∫
1

x
dx = ln x+ c,∫

cosxdx = sin x+ c,

∫
sin xdx = − cos x+ c,∫

exdx = ex + c,

∫
1

1 + x2
dx = arctgx+ c.
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Theorem 5.4. We have∫
f ′(x)f(x)αdx =

f(x)α+1

α + 1
+ c (α ̸= −1)

and
f ′(x)

f(x)
dx = lnf(x) + c.

Theorem 5.5. (Partial integration (integration by parts)) We have∫
f ′(x)g(x)dx = f(x)g(x)−

∫
f(x)g′(x)dx.

Theorem 5.6. (Partial fractions) Suppose that x2 + ax + b has two
distinct real roots, α and β. Then there exist real numbers A and B
such that

1

x2 + ax+ b
=

1

(x− α)(x− β)
=

A

(x− α)
+

B

(x− β)
.

Thus we have∫
1

x2 + ax+ b
dx = A ln(x− α) +B ln(x− β) + c.

Theorem 5.7. (Integral with substitution) We have∫
f(x)dx =

(∫
f(g(t))g′(t)dt

)(
g−1(x)

)
,

where g(x) is an invertible function.

5.2. Sample exercises.

Exercise 5.1. Determine the following indefinite integrals:∫ (√
x+

1

x

)
dx,

∫
(ex + 2 cos x)dx,

∫
3

1 + x2
dx.

Exercise 5.2. Determine the following indefinite integrals:∫
cosx sin3 xdx,

∫
x

(1 + x2)4
dx,

∫
ctgxdx,

∫
ex

2− ex
.

Exercise 5.3. Determine the following indefinite integrals:∫
x cosxdx,

∫
x lnxdx,

∫
x3 sinxdx.

Exercise 5.4. Determine the following indefinite integrals:∫
x+ 1

x2 + 1
,

∫
x+ 2

x2 − 1
dx,

∫
2x− 1

x2 − x− 2
dx.

Exercise 5.5. Determine the following indefinite integrals:∫
1√

x+ 2 + (
√
x+ 2)3

,

∫
e2x

ex − 1
dx,

∫ √
xe

√
xdx.
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6. Riemann (definite) integral

6.1. Theory.

Definition 6.1. Suppose that f is continuous on D = [a, b], with a, b ∈
R, a < b. For any positive integer n put δn := b−a

2n
and x

(n)
i := a+iδn for

i = 0, 1, . . . , 2n. Further, let t
(n)
i ∈ [x

(n)
i , x

(n)
i+1] such that f(t

(n)
i ) ≥ f(x)

for all x ∈ [x
(n)
i , x

(n)
i+1] (i = 0, 1, . . . , 2n − 1). Put

Sn :=
2n−1∑
i=0

f(t
(n)
i )δn.

Then the Riemann integral of f(x) between a and b is defined as

b∫
a

f(x)dx = lim
n→∞

Sn.

Definition 6.2. We use the following notation:

a∫
b

f(x)dx = −
b∫

a

f(x)dx,

a∫
a

f(x)dx = 0.

Theorem 6.1. We have

b∫
a

(f(x)± g(x))dx =

b∫
a

f(x)dx±
b∫

a

g(x)dx

and
b∫

a

λf(x)dx = λ

b∫
a

f(x)dx (λ ∈ R).

Theorem 6.2. (Newton-Leibniz formula) Let F (x) be a primitive func-
tion of f(x). Then we have

b∫
a

f(x)dx = [F (x)]ba = F (b)− F (a).

Theorem 6.3. (Partial integration (integration by parts) for definite
integrals) We have

b∫
a

f ′(x)g(x)dx = [f(x)g(x)]ba −
b∫

a

f(x)g′(x)dx.
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Theorem 6.4. (Integral with substitution for definite integrals) We
have

b∫
a

f(x)dx =

β∫
α

f(g(t))g′(t)dt,

where g(x) is an invertible function, and α = g−1(a) and β = g−1(b).

6.2. Sample exercises.

Exercise 6.1. Calculate the following integrals:

2∫
1

(√
x+

1

x

)
dx,

π∫
0

(ex + 2 cos x)dx,

1∫
−1

3

1 + x2
dx.

Exercise 6.2. Calculate the following integrals:

π∫
0

cos x sin3 xdx,

2∫
−2

x

(1 + x2)4
dx,

π/2∫
π/4

ctgxdx,

100∫
0

ex

2− ex
.

Exercise 6.3. Calculate the following integrals:

2π∫
0

x cosxdx,

3∫
1

xexdx,

π/2∫
0

x3 sinxdx.

Exercise 6.4. Calculate the following integrals:

10∫
−10

x+ 1

x2 + 1
,

4∫
1

x+ 2

x2 − 1
dx,

8∫
5

2x− 1

x2 − x− 2
dx.

Exercise 6.5. Calculate the following integrals:

2∫
1

1√
x+ 2 + (

√
x+ 2)3

,

2∫
1

e2x

ex − 1
dx,

2∫
1

√
xe

√
xdx.

7. Improprius (improper) integral

7.1. Theory.

Definition 7.1. Let f be bounded on the interval [a,∞). Then the
improprius integral of f(x) between a and ∞ is defined by

∞∫
a

f(x)dx = lim
b→∞

b∫
a

f(x)dx,

if the limit exists.
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Definition 7.2. Let f be bounded on the interval (−∞, b]. Then the
improprius integral of f(x) between −∞ and b is defined by

b∫
−∞

f(x)dx = lim
a→−∞

b∫
a

f(x)dx,

if the limit exists.

Definition 7.3. Let f : R → R be bounded. Then the improprius
integral of f(x) between −∞ and ∞ is defined by

∞∫
−∞

f(x)dx =

c∫
−∞

f(x)dx+

∞∫
c

f(x)dx

with an arbitrary c ∈ R, if the latter improprius integrals exist.

Definition 7.4. Let f [a, b] → R such that f is bounded on [a, c] for
any c with a < c < b. Then the improprius integral of f(x) between a
and b is defined by

b∫
a

f(x)dx = lim
c→b

c∫
a

f(x)dx,

if the limit exists.

Definition 7.5. Let f : [a, b] → R such that f is bounded on [c, b] for
any c with a < c < b. Then the improprius integral of f(x) between a
and b is defined by

b∫
a

f(x)dx = lim
c→a

b∫
c

f(x)dx,

if the limit exists.

7.2. Sample exercises.

Exercise 7.1. Calculate the following improprius integrals:

∞∫
1

2

x3
dx,

1∫
0

3√
x
dx.

8. Applications of the integral

8.1. Theory.
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Theorem 8.1. Let f, g : [a, b] → R be two functions, such that f(x) ≥
g(x) for a ≤ x ≤ b. Then the area of the domain enclosed by f(x) and
g(x) over [a, b] is given by

b∫
a

(f(x)− g(x))dx.

Theorem 8.2. Let T be a domain in R3 (i.e. a solid), and let A(x)
denote the area of the intersection of T and the plain {(u, v, w) : u = x}
for x ∈ R. Then the volume of T is given by

V (T ) =

∞∫
−∞

A(x)dx,

if the above integral exists.

Theorem 8.3. Let f : [a, b] → R be a function. Then the length of
the curve of f(x) over [a, b] is given by

L(f) =

b∫
a

√
1 + (f ′(x))2dx

if the integral exists.

Theorem 8.4. Let f : [a, b] → R be a function and let T be the
domain (solid) obtained by rotating the curve of f around he interval
[a, b] in R3. Then the volume of T and the surface of T are given by

V (T ) =

b∫
a

πf 2(x)dx

and

S(T ) =

b∫
a

2πf(x)
√

1 + (f ′(x))2dx

respectively, if the integrals exist.

Definition 8.1. Let f : [0, 2π] → R be a function. Then the Fourier-
series of f(x) is given by

a0 +
∞∑
k=1

(ak cos kx+ bk sin kx),

with

a0 =
1

2π

2π∫
0

f(x)dx
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and

ak =
1

π

2π∫
0

f(x) cos kxdx, bk =
1

π

2π∫
0

f(x) sin kxdx (k = 1, 2, . . . ).

8.2. Sample exercises.

Exercise 8.1. Calculate the area enclosed by the curves of the func-
tions f(x) = x2 and g(x) = x+ 2 over the interval [−1, 2].

Exercise 8.2. Calculate the length of the curve of f(x) = 2x+ 3 over
the interval [0, 3], and the volume and surface of the solid T obtained
by rotating f(x) over this interval.

Exercise 8.3. Give the Fourier transform of the function f(x) = x.


