Handout I - Mathematics I1

The aim of this handout is to briefly summarize the most important
definitions and theorems, and to provide some sample exercises. The
topics are discussed in detail at the lectures and seminars. Students
should also consult the suggested readings.

1. DERIVATIVES OF REAL FUNCTIONS

1.1. Theory.

Definition 1.1. Let f : D — R be a function, where D is an interval,
and let o € D. If the limit

o () = (o)
T—T0 T — "'EO
exists then we say that f is differentiable at xo. In this case we write
f(x) = f(xo)
T—T0 T — xo
for the derwate of f at xo. If f is differentiable for all xq € D then we
say that f is differentiable. We write f' for the derivative of f.

Theorem 1.1. Suppose that f(x) and g(x) are differentiable functions
for all x € R. Then we have

(f(@) +9(@)) = f'(x) + ¢'(x), (f(x)—g(2)) = f'(x) = d'(2),
(cf(x)) = cf'(z) (c€R), (f(z)g(x)) = f'(x)g(z) + f(x)g'(x),
(

)
f@)Y _ F@gla) = f(a)g' (@) Pl o
(5) - (o)) = £gla)) - ' (a).

9*(x)
Theorem 1.2. All the elementary functions are differentiable. Fur-
ther, we have

d=0(ceR), () =az*! (a €R),
(a®) = a®In(a) (a > 0), (") =¢
/ 1 / 1
(log,(x))" = m, (In(z))" = -

(sin(z))" = cos(x), (cos(x)) = —sin(z),
oL 7)) = ————, (arc x':—l
(B0 = = s (t0(0)) = s, arets(o)f = 1

Here arctg(x) is the inverse of the function tg(x) : (—m/2,7/2) — R.
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1.2. Sample exercises.

Exercise 1.1. Differentiate the following functions:
5 v v/x — cosw .
2(x° — /1), e sin(x), P ima In(sin(z)).
Exercise 1.2. Differentiate the following functions:

3

27 cos(cos(z?)) — 22 +x 22 sin(3z)

) € °
In(y/x) + /In(x)

Throughout this material all functions f are assumed to be elemen-
tary functions, with f : D — R, where D is an interval.

2. ANALYSIS OF REAL FUNCTIONS

2.1. Theory.

Definition 2.1. Let f be a function and xo € D. If there exists an
e > 0 such that for all x € DN (xg — €, 20 + €) we have

e f(xo) < f(x), then f has a local minimum at xy,

e f(xo) < f(x), then [ has a strict local minimum at x,

e f(xg) > f(x), then f has a local maximum at xy,

o f(xg) > f(x), then f has a strict local mazximum at xg.
In any of the above cases we say that f has a local extremum at xg.

Definition 2.2. Let f be a function. If for all x,y € D with v < y we
have f(x) < f(y), then we say that f is monotone increasing.

If for all x,y € D with x < y we have f(x) > f(y), then we say that
f is monotone decreasing.

Definition 2.3. Let f be a function. If for all x,y € D and X € [0, 1]
we have \f(x)+ (1 =N f(y) > f(Ax+ (1 = N)y), then we say that f is
conver on D. If —f is convex on D, then we say that f is concave on
D.

Let vy € D. If for some ¢ > 0, f is conver on (xg — €,x9) and
concave on (xg,xo + €), or vice versa, then xq is called an inflection

point of f.

Theorem 2.1. Suppose that f has local extremum at some xy € D.
Then we have f'(xy) = 0.

Theorem 2.2. Suppose that xo € D, and f'(xo) = f"(zo) = -+ =
f™(29) = 0, but fOY(x) # 0. If n + 1 is even, then f has a
local extremum at xo. Further, if f™*D(zo) < 0 then f has a local
mazimum at xo, and if f™)(x0) > 0 then f has a local minimum at
xo, respectively. On the other hand, if n+1 s odd, then f has no local
extremum at xg.
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Theorem 2.3. Suppose that f'(x) > 0 for all x € D. Then f is
monotone increasing on D.

Theorem 2.4. Suppose that f'(x) < 0 for all x € D. Then f is
monotone decreasing on D.

Theorem 2.5. Suppose that f"(x) > 0 for allz € D. Then f is convex
on D.

Theorem 2.6. Suppose that f"(x) < 0 for all x € D. Then f is
concave on D.

2.2. Sample exercise.

Exercise 2.1. Let f : R — R be defined by f(z) = 23 — 3x. Give

the complete analysis of f, that is: determine the zeroes of f; calculate

the limits lim f(z) and lim f(z); determine the local extrema of f;
Tr——00 T—00

determine the intervals where f is monotone; determine the intervals
where [ is convex/concave, and give the inflection points of f.

3. L’HOSPITAL’S RULE
3.1. Theory.

Theorem 3.1. Let f, g be two functions, such that g(x) # 0 (x € D).
Further, assume that either lim f(z) = lim g(x) =0, or lim f(x) =
T—T0 T—T0

T—T0
+oo, lim g(x) = +oo, where xy € D, or xy is an endpoint of D
T—T0

(possibly xo = +00). Then we have
/(=)

/
lim ——= = lim / (x),
a=z0 g(x)  @mwo g'(x)

if the latter limit exists.

3.2. Sample exercises.

Exercise 3.1. Calculate the following limits:

sinw x )
lim , lim —, limxlnzx.
z—0 I z—o00 T z—0

4. TAYLOR POLYNOMIAL, TAYLOR SERIES
4.1. Theory.

Definition 4.1. Let f : [a,b] — R be a function differentiable n
times. Then the Taylor polynomial of order n of f(x) around a point
xo € (a,b) is given by

n ) (4 .
x)zzf k:(! )(x—xo).

If xq = 0 then the above polynomial is called the MacLaurin polynomial

of f(x) of order n.
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Theorem 4.1. Let f : [a,b] — R be a function differentiable n + 1
times. Then we have

JorE)
Fn(@) = <00,

where £ is a number between x and xy, depending on x.

Definition 4.2. Let f : [a,b] — R be a function differentiable infinitely
many times. Then the Taylor series of f(x) around a point xo € (a,b)
15 given by

(x — xo)"+1,

k!

If xo = 0 then the above series is called the MacLaurin series of f(x)
of order n.

<18 (1
T(x)= Z S )(x — x0)".
k=0

4.2. Sample exercises.
Exercise 4.1. Guive the Taylor-series of the functions
23 4+222 —x +3, €, sinw, coswz.
5. PRIMITIVE FUNCTIONS, INDEFINITE INTEGRAL
5.1. Theory.

Definition 5.1. Suppose that we have F'(x) = f(z). Then we say that
F(z) is a primitive function of f(x).

Theorem 5.1. Let F(x) be a primitive function of f(x). Then G(z)
is a primitive function of f(x) if and only if G(x) = F(x) + ¢ is valid
with some ¢ € R.

Definition 5.2. The set of primitive functions of f(x) is called the
indefinite integral of f(x). Notation: [ f(z)dx = F(z)+ ¢ (c € R),
where F(x) is a primitive function of f(x).

Theorem 5.2. We have
Jt@ £ g@nis = [ et [ gyt
" /)\f(x)dx = )\/f(x)dx (A € R).

Theorem 5.3. We have
xa—i—l 1
/x“dx: +1+c(a7é—1), /;dmzlnx—i—c,

«

/cosxdx:sinx—i—c, /sinxdx:—cosx—l—c,

/xd 4+ / 1 d toxr +
etdr = e* + ¢ r = arctex + c.
’ 14 22 &




Theorem 5.4. We have

/f@ﬁ@wmzﬂﬂﬁl

a—+1

+c (a#-1)

and )
f'(@)
f(z)

Theorem 5.5. (Partial integration (integration by parts)) We have

/fwmmmzfmmw—/ﬂ@ﬂwm.

Theorem 5.6. (Partial fractions) Suppose that x* + ax + b has two
distinct real roots, o and 3. Then there exist real numbers A and B
such that

dr =Inf(z) + c.

1 1 A B

Trartb @-a)@-p) G@-a) @-p)
Thus we have

1

Theorem 5.7. (Integral with substitution) We have

[ stz = ([ rtsting@ar) (7 w).

where g(x) is an invertible function.

5.2. Sample exercises.

Exercise 5.1. Determine the following indefinite integrals:

1 i 3
/(\/5—1-5) dx, /(e + 2cosx)dx, /1+$2dx.

Exercise 5.2. Determine the following indefinite integrals:

/cos:vsingzrd:v, /(1_:6—:62)4(133, /Ctgmdz, /2561'

Exercise 5.3. Determine the following indefinite integrals:

/xcosxd;z:, /:cln:cd:c, /x3sinxda:.

Exercise 5.4. Determine the following indefinite integrals:

/:C—l—l /:C—l—?d / 20 — 1 d
x —dz.
241’ x2—1 " 22—x—2

Exercise 5.5. Determine the following indefinite integrals:

dz, / VzeYedr.

62w

/¢x—+2+1<¢x—+2)3’ /ez—l




6. RIEMANN (DEFINITE) INTEGRAL

6.1. Theory.

Definition 6.1. Suppose that f is continuous on D = [a,b], with a,b €
R, a < b. For any positive integer n put d,, := 62_—”“ and x§”) = a+1d, for
i=0,1,...,2". Further, let t§”) € [x(n),xﬁ)l] such that f(tg")) > f(x)

)

for all z € [z, xgi)l] (i=0,1,...,2" —1). Put

7

Then the Riemann integral of f(x) between a and b is defined as
b
/f(x)dx = lim S,.
n—oo

Definition 6.2. We use the following notation:

/af(x)dx = —/bf(a:)da:, /af(:c)dx = 0.

Theorem 6.1. We have

/b () % glo)do = [ flopde = / g(x)da
and a a a
/)\f(x)dx = )\/f(x)dx (A € R).

Theorem 6.2. (Newton-Leibniz formula) Let F'(x) be a primitive func-
tion of f(x). Then we have

b
[ f@)de = (P}l = F) - Fo)

Theorem 6.3. (Partial integration (integration by parts) for definite
integrals) We have
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Theorem 6.4. (Integral with substitution for definite integrals) We
have

b B
[ @ = [ staeng
where g(x) is an invertible function, and o = g~ '(a) and = g1 (b).
6.2. Sample exercises.
Exercise 6.1. Calculate the following integrals:

2 ™ 1
1 ) 3
/ <\/5+ ;) dz, /(e +2cosx)dx, / T dx.
1 0

-1

Exercise 6.2. Calculate the following integrals:

7 2 /2 100
in® zd 4 d <
CcOos & sin” xax, m T, ctgrde, 5ot
0 -2 w/4 0
Exercise 6.3. Calculate the following integrals:
2w 3 /2
/wcosxdaz, /xexdaz, /a:3 sin xdzx.
0 1 0
Exercise 6.4. Calculate the following integrals:
10 4 8
1 2 2r — 1
/ 1 , / T dx, / T dx.
2+ 1 2 —1 2 —x—2
~10 1 5

Exercise 6.5. Calculate the following integrals:

2
6293

/ az+2+1(\/:c—+2)3’ 1/695—

1

2
1 dx, / \/Eeﬁdx.
1

7. IMPROPRIUS (IMPROPER) INTEGRAL
7.1. Theory.

Definition 7.1. Let f be bounded on the interval [a,o0). Then the
improprius integral of f(x) between a and oo is defined by

7f($)d$=blggo/bf(fﬂ)dfc,

iof the limit exists.
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Definition 7.2. Let f be bounded on the interval (—oo,b|. Then the
improprius integral of f(x) between —oo and b is defined by

b b

/f(:z:)dm: lim f(z)dx

a——0o0
a

iof the limit exists.

Definition 7.3. Let f : R — R be bounded. Then the improprius
integral of f(x) between —oo and oo is defined by

7f(x)dac - / F(z)dz + 7f(x)dx

with an arbitrary ¢ € R, if the latter improprius integrals exist.

Definition 7.4. Let fla,b] — R such that f is bounded on [a,c]| for
any ¢ with a < ¢ < b. Then the improprius integral of f(x) between a
and b is defined by

b

/ :U—hm/f

a

if the limit exists.

Definition 7.5. Let f: [a,b] — R such that f is bounded on [c,b] for
any ¢ with a < ¢ < b. Then the improprius integral of f(x) between a
and b is defined by

b b

/f($)dx =lim | f(z)dz

c—a
a C

if the limit exists.
7.2. Sample exercises.

Exercise 7.1. Cualculate the following improprius integrals:

00 1

2 3

1 0

8. APPLICATIONS OF THE INTEGRAL

8.1. Theory.



Theorem 8.1. Let f,g: [a,b] — R be two functions, such that f(z) >
g(x) for a < x <b. Then the area of the domain enclosed by f(x) and
g(x) over [a,b] is given by

/ (f(x) - g(a))da.

a

Theorem 8.2. Let T be a domain in R (i.e. a solid), and let A(x)
denote the area of the intersection of T and the plain {(u,v,w) : u =z}
for x € R. Then the volume of T is given by

if the above integral exists.

Theorem 8.3. Let f: [a,b] — R be a function. Then the length of
the curve of f(x) over [a,b] is given by

- / VIt (F@)2da

iof the integral exists.

Theorem 8.4. Let f : [a,b] — R be a function and let T' be the
domain (solid) obtained by rotating the curve of f around he interval
la,b] in R3. Then the volume of T and the surface of T are given by

b
V(T) = /sz(x)d:v

and
b

S(T) = /27rf W1+ (f(x))2de

a

respectively, if the integrals exist.

Definition 8.1. Let f: [0,27] — R be a function. Then the Fourier-
series of f(x) is given by

ag + Z(ak cos kx + by sin kx),
k=1

X 27
——Wo/f(x)dx

with
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and
1 o 1 2T
o == [ f@)coskedn, b= [ f@ysinkeds (k= 12,...).
T T
O 0

8.2. Sample exercises.

Exercise 8.1. Calculate the area enclosed by the curves of the func-
tions f(x) = 2% and g(x) = x + 2 over the interval [—1,2].

Exercise 8.2. Calculate the length of the curve of f(x) = 2z + 3 over
the interval [0,3], and the volume and surface of the solid T' obtained
by rotating f(x) over this interval.

Exercise 8.3. Give the Fourier transform of the function f(z) = x.



