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Abstract. We prove that for any positive integers x, d, k with
gcd(x, d) = 1 and 3 < k < 35 the product x(x+d) . . . (x+(k−1)d)
cannot be a perfect power. This yields a considerable extension of
previous results of Győry, Hajdu and Saradha [15] and Bennett,
Bruin, Győry and Hajdu [3] which covered the cases k ≤ 11. We
also establish more general theorems for the case when the product
yields an almost perfect power. As in [15] and [3], for fixed k we
reduce the problem to systems of ternary equations. However, our
results do not follow as a mere computational sharpening of the ap-
proach utilized in [15] and [3], but instead require the introduction
of fundamentally new ideas. For k > 11, a great number of new
ternary equations arise that we solve by combining the Frey curve
and Galois representation approach with local and cyclotomic con-
siderations. Furthermore, the number of systems of equations grow
so rapidly with k that, in contrast with the previous proofs, it is
practically impossible to handle all cases one-by-one. The main
novelty of this paper is that we algorithmize our proofs. We apply
in a well-determined order an algorithm for solving some of the
arising new ternary equations as well as several sieves based on
the ternary equations already solved. This enables us to exclude
by means of a computer the solvability of an enormous number of
systems of equations under consideration. Our general algorithm
seems to work for larger k as well, but there is of course a compu-
tational time limit.

1. Introduction and new results

A classical theorem of Erdős and Selfridge [12] says that the product
of consecutive positive integers is never a perfect power. A natural
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generalization is the Diophantine equation

(1) x(x + d) . . . (x + (k − 1)d) = byn,

in non-zero integers x, d, k, b, y, n with gcd(x, d) = 1, d ≥ 1, k ≥ 3,
n ≥ 2 and P (b) ≤ k. Here P (u) denotes the largest prime divisor of a
non-zero integer u, with the convention that P (±1) = 1.

Equation (1) has an extremely rich literature. For d = 1, equation
(1) has been completely solved by Saradha [24] (for k ≥ 4) and Győry
[13] (for k < 4). Instead of trying to overview all branches of related
results for d > 1 (which seems to be an enormous task), we refer to the
excellent survey papers of Tijdeman [29] and Shorey [26], [27]. Here
we mention only those contributions which are closely related to the
results of the present paper, that is which provide the complete solution
of (1) when the number k of terms is fixed.

If (k, n) = (3, 2), equation (1) has infinitely many solutions even
with b = 1. Euler (see [11]) showed that (1) has no solutions if b = 1
and (k, n) = (3, 3) or (4, 2). A similar result was obtained by Obláth
[20], [21] for (k, n) = (3, 4), (3, 5) and (5, 2). By a conjecture of Erdős
equation (1) has no solutions in positive integers when k > 3 and b = 1.
In other words, the product of k consecutive terms in a coprime positive
arithmetic progression with k > 3 can never be a perfect power. By
coprime positive progression we mean one of the form

x, x + d, . . . , x + (k − 1)d,

where x, d are positive integers with gcd(x, d) = 1.
Erdős’ conjecture has recently been verified for certain values of k in

a more general form. In the following Theorem A the case k = 3 is due
to Győry [14], the cases k = 4, 5 to Győry, Hajdu, Saradha [15], and
the cases 6 ≤ k ≤ 11 to Bennett, Bruin, Győry, Hajdu [3].

Theorem A. Suppose that k and n are integers with 3 ≤ k ≤ 11,
n ≥ 2 prime and (k, n) 6= (3, 2), and that x and d are coprime integers.
If, further, b and y are non-zero integers with P (b) ≤ Pk,n where Pk,n

is given in Table 1, then the only solutions to (1) are with (x, d, k) in
the following list:

(−9, 2, 9), (−9, 2, 10), (−9, 5, 4), (−7, 2, 8), (−7, 2, 9),

(−6, 1, 6), (−6, 5, 4), (−5, 2, 6), (−4, 1, 4), (−4, 3, 3),

(−3, 2, 4), (−2, 3, 3), (1, 1, 4), (1, 1, 6).

It is a routine matter to extend Theorem A to arbitrary (that is,
not necessarily prime) values of n. Further, we note that knowing the
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k n = 2 n = 3 n = 5 n ≥ 7
3 – 2 2 2
4 2 3 2 2
5 3 3 3 2
6 5 5 5 2
7 5 5 5 3
8 5 5 5 3
9 5 5 5 3
10 5 5 5 3
11 5 5 5 5

Table 1

values of the unknowns on the left-hand side of (1), one can easily
determine all the solutions (x, d, k, b, y, n) of (1).

Very recently, for k = 5, 6 and n ≥ 7 the bounds Pk,n have been
improved to 3 by Bennett [2]. Further, for n = 2 and positive x,
Theorem A has been extended by Hirata-Kohno, Laishram, Shorey and
Tijdeman [17]. In fact they did not handle (1) for some exceptional
values of b > 1 for which (1) has been solved later by Tengely [28].
Putting together the results in [17] and [28], the following theorem
holds.

Theorem B. Equation (1) with n = 2, d > 1, 5 ≤ k ≤ 100 and
P (b) ≤ k has no solution in positive integer x.

In case of b = 1, the assumption k ≤ 100 can be replaced by k ≤ 109
in Theorem B (see [17]). When n = 3, Hajdu, Tengely and Tijdeman
[16] obtained the following extension of Theorem A.

Theorem C. Suppose that n = 3 and that (x, d, k, b, y) is a solution
to equation (1) with k < 32 such that P (b) ≤ k if 4 ≤ k ≤ 12 and
P (b) < k if k = 3 or k ≥ 13. Then (x, d, k) belongs to the following
list:

(−10, 3, 7), (−8, 3, 7), (−8, 3, 5), (−4, 3, 5), (−4, 3, 3), (−2, 3, 3),

(−9, 5, 4), (−6, 5, 4), (−16, 7, 5), (−12, 7, 5),

and (x, 1, k) with − 30 ≤ x ≤ −4 or 1 ≤ x ≤ 5,

(x, 2, k) with − 29 ≤ x ≤ −3.

Further, if b = 1 and k < 39, then we have

(x, d, k, y) = (−4, 3, 3, 2), (−2, 3, 3,−2), (−9, 5, 4, 6), (−6, 5, 4, 6).
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Theorems A, B and C confirm the conjecture of Erdős for the corre-
sponding values of k and n. Moreover, under some additional assump-
tions on P (b) they provide the complete solution of (1) for b > 1 as
well.

In the present paper we considerably extend Theorem A, up to k <
35. Our main result is the following theorem which proves Erdős’
conjecture for k < 35.

Theorem 1.1. The product of k consecutive terms in a coprime posi-
tive arithmetic progression with 3 < k < 35 is never a perfect power.

For n = 2, n = 3 as well as for k ≤ 11, Theorem 1.1 follows from
the above mentioned results. The remaining cases are covered by the
following theorems.

Theorem 1.2. Equation (1) has no solutions with n ≥ 7 prime, 12 ≤
k < 35 and P (b) ≤ Pk,n, where

Pk,n =

{
7, if 12 ≤ k ≤ 22,
k−1
2

, if 22 < k < 35.

Theorem 1.3. The only solutions to equation (1) with n = 5, 8 ≤ k <
35 and P (b) ≤ Pk,5, with

Pk,5 =

{
7, if 8 ≤ k ≤ 22,
k−1
2

, if 22 < k < 35

are given by

(k, d) = (8, 1), x ∈ {−10,−9,−8, 1, 2, 3}; (k, d) = (8, 2), x ∈ {−9,−7,−5};

(k, d) = (9, 1), x ∈ {−10,−9, 1, 2}; (k, d) = (9, 2), x ∈ {−9,−7};
(k, d) = (10, 1), x ∈ {−10, 1}; (k, d, x) = (10, 2,−9).

Note that in the case n = 3 Theorem 1.3 yields an extension of
Theorem A already for 8 ≤ k ≤ 11.

Similarly as in [15] and [3], results on equation (1) have a simple
consequence for the rational solutions of equations of the form

(2) u(u + 1) . . . (u + k − 1) = vn.

More precisely, we have the following

Corollary 1.1. Suppose that n ≥ 2, 1 < k < 35 and (k, n) 6= (2, 2).
Then equation (2) has no solutions in positive rational numbers u, v.
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For k ≤ 11, this was proved in [15]. When k > 11, the statement is
a straightforward consequence of Theorem 1.1, see [15] and [3] for the
necessary arguments. We note that equation (2) has been first studied
by Sander [23].

In the case k ≤ 11 and n ≥ 5, equation (1) was reduced in Győry [14],
Győry, Hajdu and Saradha [15], Bennett, Bruin, Győry and Hajdu [3]
and Bennett [2] to finitely many ternary equations of signature (n, n, n),
(n, n, 2) or (n, n, 3). In our paper we follow the same strategy. However,
for k > 11 and n ≥ 7 prime, numerous new ternary equations of
signature (n, n, 2) arise which must be solved under certain arithmetic
conditions. On solving these equations we combine the Frey curve and
modular Galois representation approach with local methods and some
classical work on cyclotomic fields. These results may be of independent
interest. For the most part, our results concerning ternary equations
do not follow from straightforward application of the modularity of
Galois representations attached to Frey curves, it is also necessary to
understand the reduction types of these curves at certain small primes.

For increasing k, the number of possible k-tuples (a0, . . . , ak−1) in-
troduced in (3) below and hence also the number of arising systems
of ternary equations grow so rapidly with k, that in contrast with the
cases k ≤ 11 treated in [14], [15], [3], [2], practically it is already im-
possible to handle all cases one-by-one without using computer. The
principal novelty of our paper is that we algorithmize our proof. For
fixed k, we combine our algorithm for solving the new ternary equa-
tions with several sieves based on the arising ternary equations already
solved, and we use a computer to exclude the solvability of enormous
number of systems of ternary equations. Our general method seems
to work for larger k as well, we do not see any theoretical obstacle to
extend the results even further. However, the time consumption of the
method increases rather rapidly, that is why we stopped at k = 34. As
it can be of some interest, we give a few details here.

We have used a 2.4 MHz PC with a Quad processor to execute
the calculations. To establish our new results for ternary equations
of signature (n, n, 2) (see Proposition 2.2) we have implemented our
algorithm in Magma [7]. The total running time to prove Proposition
2.2 was about two weeks. The proof of Theorem 1.1 goes via proving
Theorems 1.2 and 1.3. To verify the latter results, we have implemented
our sieving procedures in Maple, separately for the cases n ≥ 7 and
n = 5. In both cases the running time of the program was the following:
a few seconds up to k = 19, a few minutes up to k = 23, a few hours up
to k = 29, a few days for k = 30, 31 and about a week for k = 32, 33, 34
each. Altogether, after having Proposition 2.2 the calculations to prove
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Theorems 1.2 and 1.3 took about a month each. We mention that
because of the extremely huge number of cases to be looked after,
having only the ”ternary” results it is hopeless to attack the problem
without some additional, new ”sieving” ideas. Vice versa, using only
the sieving procedures with the previously known ”ternary” results,
one would be left with a lot of cases which are not handled. So to
prove our results, we need to find a balanced and efficient combination
of both techniques.

For n = 5, hardly any information is available through the theory of
”general” modular forms. In this case we make use of some classical
and new results concerning equations of the shape AX5 +BY 5 = CZ5.

The organization of the paper is as follows. In the next section we
introduce notation and summarize some old and establish some new
results about ternary equations which we use in the paper. The final
section is devoted to the proofs of the theorems.

2. Notation and auxiliary results

For integers d, x, k and indices 0 ≤ i1 < . . . < il < k put

Π(i1, . . . , il) = (x + i1d) . . . (x + ild)

and
Πk = Π(0, 1, . . . , k − 1) = x(x + d) . . . (x + (k − 1)d).

Assume that (1) has a solution in non-zero integers x, d, k, b, y, n with
the requested properties. From (1) one can then deduce that

(3) x + id = aix
n
i (i = 0, 1, . . . , k − 1)

where xi is a non-zero integer and ai is an nth power free integer with
P (ai) ≤ k. For given k, there are only finitely many and effectively
determinable such k-tuples (a0, a1, . . . , ak−1).

For brevity, we introduce the following notation. Write

(4) [i1, i2, i3] : ci1ai1x
n
i1

+ ci3ai3x
n
i3

= ci2ai2x
n
i2

where 0 ≤ i1 < i2 < i3 < k and ci1 = (i3−i2)/D, ci2 = (i3−i1)/D, ci3 =
(i2 − i1)/D with D = gcd(i3 − i2, i3 − i1, i2 − i1). Further, if 0 ≤ j1 <
j2 ≤ j3 < j4 < k with j1 + j4 = j2 + j3, then let

[j2, j3]× [j1, j4] : aj2aj3(xj2xj3)
n − aj1aj4(xj1xj4)

n = (j2j3 − j1j4)d
2.

Given a k-tuple (a0, a1, . . . , ak−1), we obtain in this way a complicated
system of ternary equations to be solved.

In the proofs of our theorems we use several results concerning ternary
equations to solve the arising systems of equations. In this section we
collect some earlier theorems and establish two new results for ternary
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equations which we need later on. We start with ternary equations of
signature (n, n, 2).

Proposition 2.1. Let n ≥ 7 be prime, u, v, w nonnegative integers,
and A and B coprime non-zero integers. Then the following Diophan-
tine equations have no solutions in pairwise coprime non-zero integers
X, Y, Z with XY 6= ±1:

Xn + 2uY n = 3vZ2, u 6= 1(5)

Xn + Y n = CZ2, C ∈ {2, 6}(6)

Xn + 5uY n = 2Z2 with n ≥ 11 if u > 0(7)

AXn + BY n = Z2, AB = 2upv, u 6= 1, p ∈ {11, 19}.(8)

Proof. This result is due to Bennett, Bruin, Győry and Hajdu [3]. ¤

The following result is new. For its formulation, we need a further
standard notation. If m is a positive integer, let rad(m) denote the
radical of m, i.e. the product of distinct prime divisors of m with the
convention that rad(1) = 1.

Set

I1 = {(2, 1), (2, 3), (2, 5), (2, 7), (6, 1), (6, 5), (10, 1), (10, 3), (14, 1),

(14, 3), (22, 1), (26, 1), (30, 1), (34, 1), (38, 1), (42, 1), (46, 1), (66, 1),

(70, 1), (78, 1), (102, 1), (114, 1), (102, 1), (114, 1), (130, 1), (138, 1)},

I2 = {(3, 1), (3, 5), (5, 1), (5, 3), (7, 1), (13, 1), (15, 1), (17, 1), (21, 1), (23, 1),

(33, 1), (35, 1), (39, 1), (51, 1), (57, 1), (69, 1), (165, 1)}
and

I3 = {(3, 2), (5, 6), (7, 2), (11, 2), (13, 2), (15, 2), (17, 2), (19, 2), (21, 2),

(23, 2), (33, 2), (35, 2), (39, 2)}.
Proposition 2.2. Let n > 31 be a prime, A,B, C pairwise coprime
positive integers with (rad(AB), C) ∈ I1∪I2∪I3 and p ∈ {11, 13, 17, 19, 23, 29, 31}
such that p - AB. Then the equation

(9) AXn + BY n = CZ2

has no solutions in pairwise coprime non-zero integers X, Y, Z with
p | XY , unless, possibly, in the cases listed in Table 2.

As we mentioned in the introduction, to prove our results in the
case n ≥ 7 we had to find an efficient combination of the ”modular”
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n (rad(AB),C,p)

37 (2,7,31), (3,5,31), (6,5,31), (19,2,29), (22,1,31), (46,1,29), (46,1,31),
(70,1,29)

41 (2,7,11), (21,2,13), (21,2,19), (21,2,29), (22,1,31), (46,1,31), (51,1,13),
(102,1,13), (165,1,13), (165,1,31)

43 (5,6,13), (6,5,23)

47 (5,6,11), (5,6,29), (6,5,31), (15,2,11), (15,2,29), (33,2,13), (33,2,23), (39,2,31)

59 (3,5,31), (6,5,31), (39,2,23), (165,1,17)

61 (5,6,13), (5,6,29),(14,3,17), (15,2,13), (15,2,29), (39,2,17), (39,2,19)

67 (165,1,29)

71 (33,2,23)

79 (5,6,17), (15,2,17), (165,1,19)

83 (165,1,29)

89 (165,1,29), (165,1,31)

97 (5,6,31), (15,2,31), (165,1,29)

107 (5,6,31), (15,2,31)

127 (33,2,31), (165,1,29)

137 (5,6,23)

193 (5,6,31), (15,2,31)

229 (33,2,31)

239 (33,2,31), (165,1,29)

Table 2

and ”sieving” techniques. A very great number of new ternary equa-
tions arose for each k > 11. We used the following strategy. We first
solved a few well-chosen ternary equations (considering only a small
subset I of I1 ∪ I2 ∪ I3 in Proposition 2.2), and using our sieves (which
will be detailed in the next section) we tried to reduce each case to
ternary equations either treated already in Propositions 2.1, 2.4 or 2.5
or belonging to I. After a while (for larger values of k) there were ex-
ceptional cases where such a reduction was unavailable. At that point
we enlarged the set I in several steps and gradually we reached the
finite sets I1, I2, I3 in Proposition 2.2. By utilizing all the equations
occurring in Propositions 2.1, 2.4, 2.5 or corresponding to I1 ∪ I2 ∪ I3

in Proposition 2.2 we were able to ”cover” all cases. For the details we
refer to the proof of Theorem 1.2.

Proof. To solve our equations of the form (9) we shall apply the mod-
ular approach. Specifically, to a putative nontrivial solution x, y of (9)
we associate a Frey curve E/Q, with the corresponding mod n Galois
representation

ρE
n : Gal(Q/Q) → GL2(Fn)
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on the n-torsion E[n] of E. This representation arises from a cuspidal
newform f =

∑∞
r=1 crq

r of weight 2 and trivial Nebentypus character.
For details, we refer to [5]. As usual, for a positive integer m let
rad2(m) denote the 2-free radical of m, i.e. the product of distinct odd
prime divisors of m, with the convention that rad2(1) = 1. It can be
shown that the level N of the newform considered above is contained in
{2α ·rad2(AB)·rad2

2(C), α = 0, 1, 2, 3, 5, 7}, {2α ·rad2(AB)·rad2
2(C), α =

1, 5}, or {256 · rad2(AB) · rad2
2(C)}, according as (rad(AB), C) ∈ I1, I2

or I3, respectively. The assumption that p|xy for a prime p with p ∈
{11, 13, 17, 19, 23, 29, 31} implies that if p is relatively prime to N then

(10) NormKf /Q(cp ± (p + 1)) ≡ 0 (mod n),

where cp is the pth Fourier coefficient of f , and Kf is the field generated
by the Fourier coefficients of f . This means that if (10) does not hold,
we arrive at a contradiction. For the recipes of this technique see [1]
or [8].

We illustrate our approach in the case (rad(AB), C) = (38, 1). The
corresponding levels are 19, 2·19, 4·19, 8·19, 32·19 and 128·19. Suppose
that x, y, z is a solution of the corresponding equation (9) in non-zero
pairwise coprime integers such that p | xy, where p is a prime with
11 ≤ p ≤ 31. Using a simple Magma program, we calculate the Fourier
coefficients cp of the corresponding one-dimensional newforms f at the
levels considered above. Then we have

(11) n | (cp − (p + 1))(cp + p + 1) =: Bp.

For the corresponding higher dimensional newforms f at the levels
under consideration we use a stronger sieve. Let

Am = NormKf /Q(c2
m − (m + 1)2)

∏

|a|<2
√

m

a is even

NormKf /Q(cm − a)

for m = 3, 5, 7. Our method yields now that

(12) n | gcd(Bp, A3, A5, A7).

Consequently, if for some prime p with 11 ≤ p ≤ 31 (11) and (12) do
not hold for any f in question, then in the case (rad(AB), C) = (38, 1)
equation (9) has no solution in pairwise coprime non-zero integers x, y, z
with p | xy.

Using the same arguments for each equation considered in Propo-
sition 2.2, we infer that equation (9) may have a solution with the
prescribed properties only in the cases listed in Table 2.
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We note that the Hasse-Weil bound implies that Bp 6= 0. Further,
for the pairs (rad(AB), C) and for the higher dimensional case we omit
Am from the stronger sieve if Am = 0 or m|ABC. ¤
Remark. We can choose further primes m for making a more stronger
sieve. For example, in the case (rad(AB), C) = (165, 1) we can apply
the sieve n| gcd(Bp, A7, A61, A73) for higher dimensional forms and we
can exclude the cases

(n, p) = (41, 13), (41, 31), (59, 17), (67, 29), (79, 19),

(89, 31), (97, 29), (127, 29), (239, 29)
(13)

as well. However, to find such appropriate primes m involves a long
computation. Since for our later purposes Table 2 and its refinement
excluding the cases listed in (13) are already sufficient, we do not con-
tinue this procedure.

We use ternary equations of signature (n, n, 3) via the following result
of Bennett [2]. For a prime p and non-zero integer u, ordp(u) denotes
as usual the largest integer v for which pv | u holds.

Proposition 2.3. If x and d are coprime non-zero integers, then the
Diophantine equation

(14) x(x + d)(x + 3d)(x + 4d) = byn

has no solutions in non-zero integers b, y and prime n with n ≥ 7 and
P (b) ≤ 3.

Proof. The statement is a simple consequence of a recent result of Ben-
nett [2]. However, for the sake of completeness we give the main steps
of the proof.

Suppose to the contrary that x, d, b, y, n is a solution to (14) with
by 6= 0. If 3 - x(x + d) then using the notation (3) the identity [1, 3]×
[0, 4] gives

a1a3(x1x3)
n − a0a4(x0x4)

n = 3d2,

and we also have gcd(a1a3x1x3, a0a4x0x4) = 1 and P (a0a1a3a4) ≤ 2. As
either ord2(a1a3) = ord2(a0a4) = 0, or ord2(a1a3) = 0 and ord2(a0a4) ≥
2 (or vice versa), the statement follows from (5) of Proposition 2.1 in
this case.

Otherwise, if 3 | x(x + d) then the identity (x + d)2(x + 4d)− x(x +
3d)2 = 4d3 yields

a2
1a4(x

2
1x4)

n − a0a
2
3(x0x

2
3)

n = 4d3.

After simplifying with a suitable power of 2, we get an equality either
of the form

Xn + 3vY n = 2uZ3, u ≥ 1, v ≥ 3, gcd(X, 3Y ) = 1,
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or of the shape

AXn + BY n = Z3, AB = 2u3v, u ≥ 1, v ≥ 3, gcd(AX,BY ) = 1.

However, using results from [2] about certain ternary equations of sig-
nature (n, n, 3), the statement follows also in this case. ¤

We will also use results on equations of signature (n, n, n).

Proposition 2.4. Let n ≥ 3 and u ≥ 0 be integers. Then the Dio-
phantine equation

Xn + Y n = 2uZn

has no solutions in pairwise coprime non-zero integers X, Y, Z with
XY Z 6= ±1.

Proof. This result is essentially due to Wiles [30] (in case u | n), Dar-
mon and Merel [9] (if u ≡ 1 (mod n)) and Ribet [22] (in the remaining
cases for n ≥ 5 prime); see also Győry [14]. ¤
Proposition 2.5. Let n ≥ 5, and let A,B be coprime positive integers
with AB = 2u3v or 2u5v, where u and v are non-negative integers with
u ≥ 4. Then the equation

(15) AXn + BY n = Zn

has no solutions in pairwise coprime non-zero integers X, Y and Z.

Proof. This is Lemma 13 in [25]. It has been proved by the method
involving Frey curves and modular forms. ¤

For n = 5, most of the above assertions on ternary equations cannot
be applied. Then we shall use the following results as well.

Proposition 2.6. Let n ≥ 3 be an integer. All the solutions of the
equation

(16) x(x + 1) . . . (x + k − 1) = byn

in positive integers x, k, b, y with k ≥ 8 and P (b) ≤ 7 are given by

(17) k ∈ {8, 9, 10} and x ∈ {1, 2, . . . , p(k) − k},
where p(k) denotes the least prime satisfying p(k) > k.

Proof. It follows from a theorem of Saradha [24] that, in (16), P (y) ≤ k.
As was seen in Győry [13], we then get x ∈ {1, 2, . . . , p(k)− k}, whence
p(k) > x+k−1. Denote by p(k) the greatest prime with p(k) ≤ k. Then,

for k ≥ 11, p(k) ≥ 11. Further, by Chebyshev’s theorem p(k) < 2p(k).
In view of p(k) ≤ k we have p(k) | x(x + 1) . . . (x + k − 1). But it
follows that 2p(k) > x + k − 1. Hence (16) and P (b) ≤ 7 give pn

(k) |
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x(x + 1) . . . (x + k − 1), which implies that pn
(k) ≤ x + k − 1. Hence we

get pl
(k) ≤ 2p(k), a contradiction.

It remains to treat the case k ∈ {8, 9, 10}. Then p(k) = 11 and it
is easy to check that the values k, x listed in (17) are the solutions of
(16). ¤
Lemma 2.1. Let n = 5. For k = 5, P (b) ≤ 3, and for 6 ≤ k ≤ 11,
P (b) ≤ 5, equation (1) has the only solution (x, d, k) = (−5, 2, 6) with
d ≥ 2.

Proof. This is a special case of Theorem 1.2 in [3]. ¤
Lemma 2.2. Let n = 5. Suppose that x, d, y, b provides a solution to
(1) with P (b) ≤ 3 and k = 4. Then either (x, d) = (−3, 2), or, up to
symmetry, (a0, a1, a2, a3) = (4, 3, 2, 1) or (9, 4, 1, 6).

Proof. This is Lemma 6.3 in [3]. ¤
Let C be a 5th power free positive integer with P (C) ≤ 7. Then we

can write

(18) C = 2α · 3β · 5γ · 7δ

with non-negative integers α, β, γ, δ not exceeding 4.

Proposition 2.7. If the diophantine equation

(19) X5 + Y 5 = CZ5

has solution in non-zero pairwise coprime integers X, Y and Z, then
either
(i) C = 2, X = Y = ±1, or
(ii) C = 7δ with 1 ≤ δ ≤ 4, 5 | XY , 5 - Z and Z is odd, or
(iii) C ∈ {2 · 32 · 7δ, 22 · 34 · 7δ, 23 · 3 · 7δ} with 1 ≤ δ ≤ 4 and 5 | Z.

This implies that if in (19) 5 - XY Z, then (i) holds. If in particular
P (C) ≤ 5, then Proposition 2.7 gives Proposition 6.1 of [3].

Proof. Let X,Y, Z be a solution of (19) in non-zero pairwise coprime
integers. By results of Dirichlet and Dénes [10], it suffices to deal with
the case C > 2 and XY Z 6= ±1. It follows from a theorem of Lebesgue
([11], p. 738, item 37) that 5 - C and

(20) C ≡ ±1,±7 (mod 52).

First assume that 5 - Z. We have

C4 ≡ 1 (mod 52) and 24 6≡ 1 (mod 52),

whence
C4 6≡ 24 (mod 52).
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Applying Lemmas 6.1 and 6.2 of [4] to (19), we deduce that 5 | XY ,
CZ is odd and

(21) r4 ≡ 1 (mod 52)

for each prime divisor r of C. In view of (18) and (21) we infer that
only r = 7 can hold, and (ii) follows.

Now suppose that 5 | Z. The prime 5 being regular, a theorem of
Maillet (see e.g. [11], p. 759, item 167) implies that C must have
at least three distinct prime factors. This means that in (18) γ = 0
and α, β, δ ≥ 1. It is easy to check that together with (20) this gives
(iii). ¤

3. Proofs

First we prove Theorems 1.2 and 1.3. As we mentioned already, we
need to consider the cases n = 5 and n ≥ 7 separately. The reason
is that the theory of ternary equations cannot be efficiently applied in
case of n = 5. We start with n ≥ 7.

Proof of Theorem 1.2. To prove the theorem we eventually reduce the
problem to the solution of several ternary diophantine equations. We
start with explaining the main ideas. Suppose that under the assump-
tions of our theorem equation (1) has a solution. First observe that, by
(3), to determine all solutions to (1) with fixed k it is sufficient to char-
acterize the arithmetic progressions of the shape a0x

n
0 , a1x

n
1 , . . . , ak−1x

n
k−1

with the properties that gcd(a0x
n
0 , a1x

n
1 ) = 1 and

(22) P (ai) ≤ k and ai is nth power free for i = 0, 1, . . . , k − 1.

Further, the assumption P (b) ≤ Pk,n implies that

(23) n | ordp

(
k−1∏
i=0

ai

)
for all primes p > Pk,n.

In particular, if p is a prime and u ≥ 1 is an integer with pu | aix
n
i

then pu | ajx
n
j if and only if pu | i− j. This assertion will be used later

on without any further reference. The number of possible k-tuples
(a0, a1, . . . , ak−1) with properties (22) and (23) grows very rapidly with
k, and it is impossible to look at them one-by-one if k is relatively
large. So we apply the following strategy.

We exclude the possible coefficient k-tuples (a0, a1, . . . , ak−1) in sev-
eral steps, using certain procedures in a well-determined order. A k-
tuple will be excluded after assuring that in the corresponding case
equation (1) cannot have other solutions than those listed in the state-
ment. We start with arguments with which we can exclude a great
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number of k-tuples (a0, a1, . . . , ak−1). By induction we can exclude a
lot of possibilities. Namely, if for some ` ≥ 3 P (a0 . . . a`−1) ≤ P`,n or
P (ak−` . . . ak−1) ≤ P`,n holds, then the statement follows either by in-
duction, or by Theorem A. By this observation the number of cases to
be considered can be reduced drastically. Subsequently, after each step,
it will be simpler and simpler to manage and exclude the remaining k-
tuples. We shall explain the details later on, at the sieves. Further, we
provide examples to illustrate how the sieves work.

In what follows, we always assume that k is fixed with 11 < k < 35.
We use the following convention. Let 2 = p1 < p2 < . . . < pπ(k−1) be
the primes ≤ k − 1, where π(k − 1) denotes the number of primes not
exceeding k − 1. Observe that as Pk,n < k for n ≥ 7, by (23) we have
P (ai) < k in (22) for all i = 0, 1, . . . , k−1. We indicate the distribution
of these primes among the ai resp aix

n
i (or in other words, the prime

divisors of the ai resp. aix
n
i ) by the help of certain π(k − 1)-tuples of

the form (mπ(k−1), . . . , m1). For 3 ≤ j ≤ π(k − 1) let

mj ∈ {×, 0, 1, . . . , pj − 1}
where mj = × if pj - Πk (i.e. pj does not divide x(x + d) . . . (x + (k −
1)d)); otherwise, let mj denote the integer from among 0, 1, . . . , pj − 1
for which pj | x+mjd. In our proof first we consider such cases when it
is not specified which terms of the progression x, x+d, . . . , x+(k−1)d
are divisible by 2 and 3. Then we write mj = ∗ for j = 1, 2. In such
a case we say that the distribution of p1, . . . , pπ(k−1) among the ai resp
aix

n
i corresponds to the π(k− 1)-tuple (mπ(k−1), . . . , m1). Note that in

fact we shall need a kind of ”negative” information: the location of the
coefficients ai without ”large” prime factors will be of great importance
for us. The use of our tests sieving with all π(k − 1)-tuples of the
form (mπ(k−1), . . . , m3, ∗, ∗) will enable us to exclude full branches of
k-tuples (a0, a1, . . . , ak−1) at the same time. This makes our algorithm
very efficient. Our first three tests below seem to be especially efficient,
at least for the range of k under consideration.

Later we shall need to specify also those terms of x, x + d, . . . , x +
(k − 1)d which are divisible by 2 and/or 3. For j = 1 and 2, let

(24) mj ∈ {×, 0, 1, . . . , k − 1}
such that, as in the case j ≥ 3, mj = × if pj - Πk and mj is one of
0, 1, . . . , k − 1 for which pj | x + mjd and

ordpj
(x + mjd) = max

1≤`≤k−1
ordpj

(x + m`d).

This will enable us to calculate the exact orders of the primes p1 = 2
and p2 = 3 in the numbers aix

n
i . Then we shall use further tests sieving
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first with all possible π(k−1)-tuples of the form (mπ(k−1), . . . , m3,m2, ∗),
(mπ(k−1), . . . , m3, ∗,m1) and thereafter with tuples (mπ(k−1), . . . , m3,m2,m1)
with m1,m2 satisfying (24).

In our sieves we shall use ternary equations. We shall distinguish
between (n, n, n), (n, n, 3) and (n, n, 2)-sieves, according as the ternary
equations involved are of signature (n, n, n), (n, n, 3) or (n, n, 2).

(n,n, n)-sieve I. Suppose that we are dealing with a π(k − 1)-tuple
T = (mπ(k−1), . . . ,m3, ∗, ∗). First (by the help of T ) we check whether
there exists an arithmetic progression i1, i2, i3 with 0 ≤ i1 < i2 < i3 ≤
k− 1 such that P (ai1ai2ai3) ≤ 3 and i1 ≡ i2 ≡ i3 (mod 3). If there are
such indices, then by Proposition 2.4 the identity [i1, i2, i3] implies that
3 | x + i1d (and then consequently 3 | x + i2d, x + i3d) must be valid,
otherwise we are done. Then we apply an exhaustive search for indices
i4, i5 with which some appropriately chosen identities of the form (4)
lead to a contradiction. For example, assume that P (a2a5a8) ≤ 3. Then
by [2, 5, 8] we know that 3 | x+2d, x+5d, x+8d. Suppose further that
P (a4a6) ≤ 3. Then gcd(x, d) = 1 shows that P (a4a6) ≤ 2. Hence, as
exactly one of ord3(x+2d) ≥ 2, ord3(x+5d) ≥ 2, ord3(x+8d) ≥ 2 holds,
one of the identities [2, 4, 5], [5, 6, 8], [2, 6, 8] (again by Proposition 2.4)
leads to a contradiction.

After having checked all the possible π(k − 1)-tuples of the form
(mπ(k−1), . . . , m3, ∗, ∗) and all the possible triples (i1, i2, i3) in question,
we exclude those tuples T which lead in this way to a contradiction.

As an example, take k = 15 and let

T = (0, 3, 0,×, ∗, ∗).
Then we have P (a2a4a5a6a8) ≤ 3, and by the previous argument T can
be excluded.

(n,n,3)-sieve. Suppose that a π(k− 1)-tuple T survives the previous
test. Then we try to find an index i0 and a difference d0 with P (d0) ≤ 3,
i0−2d0 ≥ 0 and i0+2d0 ≤ k−1 such that P (ai0−2d0ai0−d0ai0+d0ai0+2d0) ≤
3. Let D = gcd(x + (i0 − 2d0)d, d0d). Obviously, gcd(x, d) = 1 and
P (d0) ≤ 3 imply that P (D) ≤ 3. Hence as P (ai0−2d0ai0−d0ai0+d0ai0+2d0) ≤
3 the equation

(x + (i0 − 2d0)d)

D

(x + (i0 − d0)d)

D

(x + (i0 + d0)d)

D

(x + (i0 + 2d0)d)

D
=

=
ai0−2d0ai0−d0ai0+d0ai0+2d0(xi0−2d0xi0−d0xi0+d0xi0+2d0)

n

D4

yields a contradiction using Proposition 2.3. We check all the possible
i0, d0, and exclude again all the T leading in this way to a contradiction.
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To see an example, let k = 15 and

T = (0, 3, 4, 2, ∗, ∗).
Note that T survives the previous test. We have P (a5a6a8a9) ≤ 3,
hence we can take i0 = 7 and d0 = 1, and by the above test T can be
excluded.

(n,n, n)-sieve II. Consider a π(k−1)-tuple T = (mπ(k−1), . . . , m3, ∗, ∗)
which is not excluded by the previous tests. We let m1 run through
the set {×, 0, 1, . . . , k− 1} and examine all π(k− 1)-tuples of the form
T ′ = (mπ(k−1), . . . , m3, ∗,m1). We perform an exhaustive search to find
an identity of the form [i1, i2, i3] leading to a ternary equation of the
shape AXn + BY n = Zn such that gcd(A,B) = 1, and AB is either of
the form 2u3v or 2u5v, with u ≥ 4 in both cases. If we succeed, then
the corresponding π(k − 1)-tuple can be excluded by Proposition 2.5.

As an example, choose k = 15 and

T ′ = (0, 3, 1, 4, ∗, 11).

Note that this π(k−1)-tuple cannot be excluded by the previous tests.
However, taking the identity [2, 10, 11], after cancelling an appropriate
power of 3 we get a ternary equation of the form AXn + BY n = Zn

with gcd(A,B) = 1 and AB = 2u3v, u ≥ 4. Hence we can exclude T ′.

(n,n,2)-sieve I. Suppose that a π(k−1)-tuple T ′ = (mπ(k−1), . . . , m3, ∗,m1)
passes the previous tests. Then we consider all π(k − 1)-tuples of the
form T ∗ = (mπ(k−1), . . . ,m2,m1) with m2 ∈ {×, 0, 1, . . . , k − 1}. We
search for an identity of the form [j2, j3]×[j1, j4] which leads to a ternary
equation of the shape AXn + BY n = CZ2 such that gcd(A,B, C) = 1
and one of the following holds: AB = 2u (u 6= 1), C = 3v; AB = 1,
C ∈ {2, 6}; AB = 2upv (u 6= 1, p ∈ {11, 19}), C = 1. Then applying
Proposition 2.1, the corresponding T ∗ π(k − 1)-tuple can be excluded.

For example, choose again k = 15, and take

T ∗ = (0, 3, 1, 2, 0, 3).

Note that T ∗ passes all the previous sieves. However, the identity
[5, 10]× [4, 11] gives rise to a ternary equation of the form Xn +4Y n =
3Z2, which leads to a contradiction, as explained above.

(n,n,2)-sieve II. Assume that a π(k − 1)-tuple T ∗ survives the pre-
vious tests. Then we try to find again an identity of the form [j2, j3]×
[j1, j4], leading to a ternary equation AXn+BY n = 2Z2 with AB = 5u.
Then Proposition 2.1 implies that n = 7. We collect these π(k − 1)-
tuples T ∗ to a set S, and make a note that in their cases the exponent
n = 7 has to be handled separately.
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As an example, let k = 15 and let

T ∗ = (0, 3, 4, 1, 8, 3).

As one can easily see, T ∗ survives the previous tests. However, after
cancellations, the identity [5, 6] × [2, 9] leads to a ternary equation of
the shape Xn + 5uY n = 2Z2 with u > 0, and we can put T ∗ into S.

(n,n,2)-sieve III. Assume that a π(k− 1)-tuple T ∗ survives the pre-
vious tests. Then we search for an identity [j2, j3] × [j1, j4] such that
the implied ternary equation satisfies the conditions of Proposition
2.2. Then this proposition and the subsequent Remark yield that n
is (explicitly) bounded for the case corresponding to T ∗. We put these
π(k − 1)-tuples T ∗ into the set S, and to each of them we attach the
list of the corresponding ”exceptional” exponents, to be checked later.

For example, let k = 15 and

T ∗ = (0, 3, 1, 4, 0, 0).

As one can check, this π(k−1)-tuple passes each earlier sieve. However,
the identity [6, 11]×[3, 14] gives (after cancellations) a ternary equation
of the shape Xn + 5uY n = Z2 with 11 | XY , and we can put T ∗ into
S.

After executing the above procedures, we could exclude all the π(k−1)-
tuples, for all values of k, up to very few exceptions. In those cases,
beside fixing the terms which are divisible by the highest powers of 2
and 3, respectively, we also fix the terms which are divisible by the
highest powers of 5 and 7, respectively. Then we execute the previous
tests once again. As now we have more information, because of can-
cellations (of 5-s and 7-s) we are able to exclude (or to put in S) these
cases as well.

It remains to check the π(k−1)-tuples T ∗ in S for some small values
of the exponent n. This can be done very easily by the following local
argument.

Local sieve. For each element in S for the corresponding remaining
values of n (obtained by using Proposition 2.1, Proposition 2.2 and
the subsequent Remark) we consider the problem locally. For each
such n we choose a prime q of the form q = tn + 1, with t as small
as possible. For example, in the cases n = 11, 13, 17, 19, 23 we take
q = 23, 53, 103, 191, 47, respectively. Then we check the putative arith-
metic progressions modulo q in the following way. By the choice of the
corresponding modulus, the use of Euler-Fermat theorem guarantees
that xn

i may assume only very few values modulo q. Checking all the
cases one-by-one and using that the numbers aix

n
i (i = 0, 1, . . . , k − 1)
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should be consecutive terms of an arithmetic progression, we get a
contradiction in each case.

To illustrate the local argument, chose k = 15, n = 23 and take the
π(k − 1)-tuple

(0, 3, 1, 4, 0, 0)

from S. Observe that the 23rd powers modulo 47 are exactly −1, 0, 1.
Hence in this case the putative progression aix

23
i , (i = 0, 1, . . . , 14),

should be of the form

±2α03β013ν0 ,±7δ1 ,±2,±3 ·11ε3 ,±22 ·5γ4 ,±1,±2 ·3,±1,±237δ8 ,±325γ9 ,

±2,±1,±223,±13ν13 ,±2 · 5γ1411ε14

modulo 47; with non-negative exponents smaller than 23 and with the
possible diversion that at most one of the terms can be equal to 0.
However, as one can easily check even by hand, such an arithmetic
progression does not exist. In all other cases a similar argument works,
and this completes the proof. ¤

Proof of Theorem 1.3. Let (x, d, k, b, y) be a solution of (1) with n = 5.
For d = 1, each factor x + id in (1) must be positive or negative. Then
we can reduce equation (1) to the case x > 0, and Proposition 2.6
applies to obtain the solutions listed in the theorem.

In what follows, we assume that d ≥ 2. Further, if k ≤ 11, in view
of Lemma 2.1 we can restrict ourselves to the case 7 | a0 . . . ak−1.

For 8 ≤ k ≤ 13, most of our work in proving Theorem 1.3 is concen-
trated in treating k = 8. We note that the above sieves can be utilized
to prove our theorem for larger values of k only. For k ≤ 13 too many
exceptions would remain after using our sieves. Hence for these values
of k we shall handle the arising k-tuples (a0, a1, . . . , ak−1) without using
sieves, tests and computers.

The case k = 8. If 7 | a0, a7 then omitting in (1) x and x + 7d, we
arrive at the case k = 6, and by Lemma 2.1 we get x + d = −5, d = 2.
This yields the solution (x, d) = (−7, 2). If 7 | a1 or 7 | a6, then we
omit the factors x, x+ d resp. x+6d, x+7d and we obtain in a similar
way the solutions (x, d) = (−9, 2), (−5, 2).

It remains the case 7 | a2 . . . a5. By symmetry it suffices to consider
the case 7 | a2a3.

First suppose that 7 | a2. If 5 - a0 . . . a7, then Lemma 2.1 applied
to Π(3, 4, 5, 6, 7) shows that there is no solution. If 5 | x + 2d, then
5 | x + 7d and for (i1, i2, i3, i4) = (3, 4, 5, 6) we get

(25) Π(i1, i2, i3, i4) = b1y
5
1,
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where b1, y1 are non-zero integers with P (b1) ≤ 3. Then Lemma 2.2
gives that either (x + 3d, d) = (−3, 2) which leads to the solution
(x, d) = (−9, 2) or, up to symmetry,

(a3, a4, a5, a6) = (4, 3, 2, 1) or (9, 4, 1, 6).

If (a3, a4, a5, a6) equals (4, 3, 2, 1) or (1, 2, 3, 4), then applying Propo-
sition 2.7 to [0, 3, 6] resp. to [1, 2, 3], we arrive at a contradiction. In
the remaining cases Proposition 2.7 can be applied to [1, 3, 5] or [0, 1, 3]
and we get again a contradiction.

Next assume that 5 | x. If 3 - Π8 or 3 | x, we can apply Proposition
2.7 to [1, 4, 7]. Otherwise, Proposition 2.7 can be applied to [1, 4, 7],
[4, 6, 7] or [1, 3, 4] to obtain a contradiction.

Let 5 | x + d. If 3 - Π8 or 3 | x, one of the equations [3, 4, 5], [0, 3, 4],
[5, 6, 7], [4, 5, 7] leads to a contradiction by Proposition 2.7. In the
remaining cases at least one of the equations [3, 4, 5], [0, 1, 3], [4, 5, 7],
[0, 3, 6], [3, 5, 7], [0, 2, 4] is not solvable by Proposition 2.7.

Let now 5 | x + 3d. If 3 - Π8 or 3 | x(x + 2d), then using Proposition
2.7, equation [1, 4, 7] leads to a contradiction. If 3 | x + d, we get the
equation (25) with (i1, i2, i3, i4) = (4, 5, 6, 7). Then Lemma 2.2 gives
that either (x + 4d, d) = (−3, 2) which does not yield any solution of
(1) or, up to symmetry,

(a4, a5, a6, a7) = (4, 3, 2, 1) or (9, 4, 1, 6).

It is easy to verify that only the second option can occur. Then [0, 3, 6]
or [1, 4, 5] has no solution, according as (a4, a5, a6, a7) equals (9, 4, 1, 6)
resp. (6, 1, 4, 9).

Finally assume that 5 | x+4d. Then applying Lemma 2.2 to equation
(25) with (i1, i2, i3, i4) = (1, 3, 5, 7) we get that either (x+d, d) = (−3, 2)
which yields the solution (x, d) = (−5, 2) of (1) or, up to symmetry,

(a1, a3, a5, a7) = (4, 3, 2, 1) or (9, 4, 1, 6).

It follows that in each case x + d, x + 3d, x + 5d and x + 7d are all
divisible by 4 which contradicts the assumption that gcd(x, d) = 1.

Next consider the case 7 | x + 3d. If 5 - a0 . . . a7 or if 5 | x + 3d
then we have (25) with (i1, i2, i3, i4) = (4, 5, 6, 7). Then, by Lemma
2.2, (a4, a5, a6, a7) equals (4, 3, 2, 1), (1, 2, 3, 4), (9, 4, 1, 6) or (6, 1, 4, 9).
Now Proposition 2.7 proves that [1, 4, 7], [2, 3, 4], [0, 1, 2] resp. [1, 4, 5]
is not solvable.

Let now 5 | x. If 3 - x + d then Proposition 2.7 applies to [1, 4, 7],
leading to a contradiction. If 3 | x+d, then by Proposition 2.7 at least
one of the equations [2, 4, 6], [1, 4, 7], [4, 6, 7], [1, 2, 4] has no solution.
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Assume now that 5 | x + d. If 3 - Π8 or 3 | x, then by Proposition
2.7, one of the equations [0, 2, 4], [2, 3, 4] and [5, 6, 7] has no solution
satisfying (1). Let now 3 | x + d. If x is odd then equation [0, 1, 2]
is not solvable by Proposition 2.7. Otherwise, if x is even then by
gcd(x, d) = 1 d is odd, whence 22 | x or 22 | x + 2d. If 32 - x + 7d
or 32 | x + 7d and 22 | x then Proposition 2.7 shows that [4, 5, 7] resp.
[2, 4, 5] is not solvable. When 32 | x + 7d and 22 | x + 2d, then using
the fact that

(26) X5 ≡ 0,±1 (mod 11)

for any integer X, we deduce that [1, 4, 5] is not solvable (mod 11).
Next let 3 | x + 2d. If x is odd or ord2(x) = ord2(x + 4d), then in

view of Proposition 2.7 [0, 2, 4] has no solution. As gcd(x, d) = 1, it
remains the case when 23 | x or 23 | x+4d. If 32 - x+2d and 32 - x+5d,
then [2, 4, 5] is not solvable by Proposition 2.7.

Assume that 32 | x + 2d. If 23 | x, then [4, 5, 7] yields the only
solution

x4 ≡ x5 ≡ x7 ≡ ±1 (mod 11).

Together with (3) this gives d = 1 which is excluded. If 23 | x+4d, then
[0, 5, 7] is not solvable (mod 11). Finally, consider the case 32 | x+5d.
If 23 | x + 4d, then Proposition 2.7 shows that equation [1, 4, 7] is not
solvable. By assumption we have 5 | x + 6d. If 23 | x, then [1, 4, 7] or
[2, 4, 6] is not solvable (mod 11), according as 52 | x + 6d or not.

Let now 5 | x + 2d. If 3 - Π8, then solving [4, 5, 6] by means of
Proposition 2.7 we do not get any solution for (1). First assume that
3 | x + d. Then, by Proposition 2.7, [0, 3, 6] or [4, 5, 6] has no solution,
according as 22 - x or 22 | x. Next let 3 | x + 2d. Then Proposition
2.7 implies that [0, 1, 4], [0, 4, 6] or [1, 2, 4] is not solvable, according as
23 | x, 23 | x + 4d or 23 - x and 23 - x + 4d. Assume now that 3 | x.
If 23 - x + d and 23 - x + 5d then [1, 3, 5] is not solvable in view of
Proposition 2.7. It remains the case 23 | x + d or 23 | x + 5d. Then
Proposition 2.7 implies that [0, 3, 6], [3, 4, 6] or [1, 4, 5] is not solvable,
according as ord3(x) = ord3(x + 6d) = 1, 32 | x or 32 | x + 6d and
23 | x + 5d. If 32 | x + 6d and 23 | x + d, then Proposition 2.5 proves
that [0, 1, 4] has no solution.

Finally, assume that 5 | x + 4d. If 3 - Π8 or 3 | x + 2d, then at least
one of the equations [0, 3, 6], [1, 4, 7] is not solvable by Proposition 2.7.
If 3 | x, then, by Proposition 2.7, [1, 2, 5], [1, 5, 7] or [1, 3, 5] is not
solvable, according as 23 | x+d, 23 | x+5d or 23 - x+d and 23 - x+5d.
If 3 | x + d, then [0, 2, 6], [2, 5, 6] or [2, 4, 6] has no solution, according
as 23 | x + 2d, 23 | x + 6d or 23 - x + 2d and 23 - x + 6d. This completes
the proof of the case k = 8.
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The cases k = 9,10,11. In view of P (b) ≤ 7, (1) implies (3) with
P (ai) ≤ 7 for each i. Hence we deduce from (1) that

(27) Π(0, 1, . . . , k − 2) = b2y
5
2

where b2, y2 are non-zero integers with P (b2) ≤ 7. We can now proceed
by induction on k. For k = 9, we apply to (27) our results proved above
in the case k = 8 and we infer that all the solutions of (1) with d ≥ 2
are given by d = 2, x ∈ {−9,−7}. For k = 10, we obtain similarly that
d = 2, x = −9, while, for k = 11, we do not get any solution for (1).

The cases k = 12,13. First suppose that at most one factor, say
x + id, is divisible by 11. Then 11 - ai, and we get (27). Using again
induction on k, we infer that in these cases (1) has no solution. If two
factors, say x + id and x + jd with i < j, are divisible by 11, then we
deduce from (1) that

(28) Π(i + 1, . . . , j − 1) = b3y
5
3,

where j = i + 11 and b3, y3 are non-zero integers with P (b3) ≤ 7. We
can now apply our results obtained for k = 10 and it follows that no
new solutions of (1) arise.

The cases k≥14. From this point on it is definitely worth algo-
rithmizing the proof and using a computer. We execute the following
tests. As they are rather similar to those used in case of n ≥ 7, we
apply the same notation.

(5,5,5)-sieve I-II. We apply the sieves (n,n,n)-sieve I and (n,n, n)-
sieve II like in case of n ≥ 7, but consecutively. As the underlying
Propositions 2.4 and 2.5 are valid also for n = 5, this can be done
without any restrictions.

(5,5,5)-sieve III. From this point on we work with the set T ∗ (see the
corresponding part of the proof of Theorem 1.2). For each π(k−1)-tuple
in T ∗ we check whether it is possible to find three terms of the arith-
metic progressions under consideration, such that their corresponding
linear combination leads to an equation of the form

Xn + Y n = CZn

with P (C) ≤ 5. If we can find such terms, then the corresponding
π(k − 1)-tuple T ∗ can be excluded by Proposition 2.7. (We can easily
take care of the cases corresponding to part (i) of the proposition.) If
a π(k − 1)-tuple T ∗ cannot be excluded, we put it into a set S.

Sieve modulo 11. Similarly as in Local sieve, we test all elements of
S locally. In this case we can obviously use the prime 11. By the help
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of the same method as in the proof of Theorem 1.2, all π(k− 1)-tuples
in S can be excluded, and the proof is complete. ¤

Proof of Theorem 1.1. We must prove that for 3 < k < 35 and b = 1,
equation (1) has no solution in positive integers x, d, y and n. Suppose
that such a solution exists. By the result of Erdős and Selfridge we
may assume that d > 1. Further, as was mentioned earlier, without
loss of generality we may assume that n is prime. If n = 2 or n = 3,
then the statement immediately follows from Theorem B and Theorem
C, respectively. In case of n = 5, Theorem 1.1 is a consequence of
Theorem A and Theorem 1.3. Finally, for any prime n ≥ 7 Theorem
A together with Theorem 1.2 imply the assertion. ¤
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