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Abstract

Digital metrics on the digital space play an important role in several branches of
discrete mathematics, e.g. in discrete geometry or digital image processing. We
perform an overall analysis on some properties of neighborhood sequences which
induce metrics on Z

n.
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1 Introduction

Motions on the digital space play an important role in several parts of discrete
mathematics, including discrete geometry and digital image processing. The
most important motions in Z

2 are based upon the classical 4-neighborhood
and 8-neighborhood relations. These relations lead to the so called cityblock
(or von Neumann) and the chessboard (or Moore) motions, respectively. The
alternate use of these neighborhood relations gives rise to the octagonal dis-
tance. These motions and the induced distance functions were systematically
investigated in the classical paper of Rosenfeld and Pfaltz (1968). By allow-
ing any periodic mixture of the 4- and 8 neighborhood relations, Das et al.
(1987a) introduced the concept of periodic neighborhood sequences. They also
extended this notion to Z

n. Several papers are devoted to the description of



the properties of such sequences, see e.g. (Das, 1990; Das and Chatterji, 1990;
Das et al., 1987b) and the references given there. Later, Fazekas et al. (2002)
extended the theory to the general case, i.e. when any (not necessary periodic)
sequences are considered. The use of such sequences provide a more flexible
tool than the previous ones. For example, A. Hajdu and L. Hajdu (2004)
could obtain digital metrics on Z

2 based upon such sequences, which yield the
best approximation to the Euclidean distance in some sense. Using periodic
sequences, only some parts of such sequences can be given, see e.g. (Das, 1992;
Mukherjee et al., 2000).

Those neighborhood sequences which generate metrics on the digital space
Z

n naturally play a special role in the above mentioned problems and areas.
In this paper we perform an overall analysis on the structural and individual
properties of these sequences. It turns out that in 2D the set of such sequences
has a nice algebraic structure under a natural partial ordering relation (Section
3), and that in any dimension it has some interesting topological properties, as
well (Section 4). We also prove that if a neighborhood sequence A generates a
metric, then each symbol in A has a density (Section 5). Finally, we give some
data about the prefixes of metrical neighborhood sequences in Z

n (Section 6).

2 Basic concepts and notation

In this section we introduce some standard notation concerning neighborhood
sequences, (see e.g. (Das et al., 1987a; Fazekas et al., 2002)).

For the whole paper let Z and Z
+ denote the set of integers and positive

integers, respectively.

Let n ∈ Z
+ and m ∈ Z with 0 ≤ m ≤ n. The points p = (p1, . . . , pn) and

q = (q1, . . . , qn) in Z
n are m-neighbors, if the following two conditions hold:

• |pi − qi| ≤ 1 (1 ≤ i ≤ n),

•
n
∑

i=1
|pi − qi| ≤ m.

The sequence A = (A(i))∞i=1, where A(i) ∈ {1, . . . , n} for all i ∈ Z
+, is called an

n-dimensional (shortly nD) neighborhood sequence. If for some non-negative
integer k and l ∈ Z

+ we have A(i + l) = A(i) whenever i > k then we briefly
write

A = A(1)A(2) . . . A(k)A(k + 1)A(k + 2) . . . A(k + l).

In case of k = 0, i.e. when A = A(1)A(2) . . . A(l), A is called periodic with
period l. The set of the nD-neighborhood sequences will be denoted by Sn,
while the set of periodic ones by Pn.
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Let p, q ∈ Z
n and A ∈ Sn. The point sequence p = p0, p1, . . . , pt = q, where

pi−1 and pi are A(i)-neighbors in Z
n (1 ≤ i ≤ t), is called an A-path from p

to q of length t. The A-distance d(p, q; A) of p and q is defined as the length
of the shortest A-path(s) between them. As a brief notation, we also use d(A)
for the A-distance.

It is not true that d(A) is a metric on Z
n for every A ∈ Sn. With the following

result of Nagy (2003) we can decide whether the distance function related to
A is a metric on the n-dimensional digital space, or not.

Theorem 1 (see (Nagy, 2003)) Let A ∈ Sn, and for every i ∈ Z
+ and j ∈

{1, . . . , n} put A(j)(i) = min(A(i), j). Then d(A) is a metric if and only if

k
∑

i=1

A(j)(i) ≤
k+t−1
∑

i=t

A(j)(i)

for any k, t ∈ Z
+ and j ∈ {1, . . . , n}.

For each integer n with n ≥ 2 let Mn denote the set of those nD-neighborhood
sequences which generate metrics on Z

n. If A ∈Mn then A is called metrical.

In our structural investigations we examine the set of metrical neighborhood
sequences with respect to two partial orderings, ⊒∗ and ⊒. These orderings
are defined in the following way. For A,B ∈ Sn write

A ⊒∗ B ⇐⇒ d(p, q; A) ≤ d(p, q; B) for every p, q ∈ Z
n,

and set
A ⊒ B ⇐⇒ A(i) ≥ B(i) for every i ∈ Z

+.

The ordering ⊒∗ was introduced in (Das et al., 1987a) for Pn and was inves-
tigated in (Das, 1990) and (Fazekas, 1999) later on. In (Fazekas et al., 2002)
the authors extended this ordering to Sn and introduced ⊒, as well. From
(Fazekas et al., 2002) we know that

A ⊒∗ B ⇐⇒
k
∑

i=1

A(j)(i) ≥
k
∑

i=1

B(j)(i) for any k ∈ Z
+ and j ∈ {1, . . . , n},

and that the ordering ⊒ is a proper refinement of ⊒∗.

Now we recall a few basic concepts and facts from lattice theory. They will be
used throughout the paper without any further reference. Let H be a partially
ordered set. We say that H is a lattice, if for any A,B ∈ H the greatest lower
bound A ∧B and the least upper bound A ∨B of these elements exist. If for
any S ⊆ H the greatest lower bound

∧

S and the least upper bound
∨

S of S
also exist, then the lattice H is called complete. It is well-known that if

∧

S
exists for all subset S of H, then

∨

S also exists for any subset, and vice versa.
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The lattice H is distributive, if for any A,B,C ∈ H we have

(A ∧B) ∨ C = (A ∨ C) ∧ (B ∨ C) and (A ∨B) ∧ C = (A ∧ C) ∨ (B ∧ C).

As in our investigations we consider greatest lower bounds and least upper
bounds both in Mn and in Sn, we use the following convention. The simple
notation ∧ and ∨ will always refer to the corresponding elements in Mn (with
respect to the given ordering), and we will write ∧Sn

and ∨Sn
if we work in

Sn.

3 Lattices of metrical neighborhood sequences

In this section we investigate the structural behavior of the set of metrical
neighborhood sequences with respect to both ⊒∗ and ⊒. We start with some
basic results. First we formulate a result from (Fazekas et al., 2002) which will
be a useful tool.

Lemma 2 (S2,⊒∗) is a complete distributive lattice. Moreover, if S is any
subset of S2 then for the sequences A =

∧

S2
S and B =

∨

S2
S, for any k ∈ Z

+

we have

k
∑

i=1

A(i) = min

{

k
∑

i=1

C(i) C ∈ S

}

and
k
∑

i=1

B(i) = max

{

k
∑

i=1

C(i) C ∈ S

}

.

PROOF. The statement is a reformulation of Theorem 3.5 from (Fazekas et
al., 2002); see also its proof. 2

Remark 3 By Proposition 3.14 of (Fazekas et al., 2002) we also have that
(Sn,⊒) is a complete distributive lattice for any n ≥ 2.

The next result shows that it is not true that any two metrical neighborhood
sequences can be compared using these orderings.

Proposition 4 The partial orderings ⊒∗ and ⊒ are not total orders on Mn.

PROOF. Let A = 12, B = 11222. By Theorem 1 we can see that A,B ∈Mn.
Moreover, it is easy to check that A and B cannot be compared neither with
⊒∗, nor with ⊒. 2
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3.1 The structure of Mn with respect to ⊒

In (Fazekas et al., 2002) the authors introduced ⊒ to obtain better structural
results for Sn and Pn than with ⊒∗. The following result shows the slightly
surprising fact that Mn does not form a nice structure under ⊒.

Proposition 5 (Mn,⊒) is not a lattice for n ≥ 2.

PROOF. Let A = 12222212, B = 12221222. By Theorem 1 we have that
A,B ∈Mn. We show that A ∧B does not exist.

Let C = 12121212, D = 11221212. Clearly, C,D ∈ Mn, A ⊒ C, B ⊒ C,
A ⊒ D, and B ⊒ D. Moreover, neither C nor D can be the greatest lower
bound of A and B in Mn, since C and D cannot be compared. Looking at the
first few elements of A,B,C and D we obtain that if A ∧ B exists, then we
must have A ∧ B = 1222121 . . . . However, such a sequence cannot belong to
Mn, which yields that A ∧B does not exist. 2

3.2 The structure of Mn with respect to ⊒∗

The situation for (Mn,⊒∗) is similar to (Mn,⊒) at least when n ≥ 3. However,
this is not that surprising, since it was shown in (Fazekas et al., 2002) that
(Sn,⊒∗) is also not a lattice in this case.

Proposition 6 (Mn,⊒∗) is not a lattice for n ≥ 3.

PROOF. Let n be an integer with n ≥ 3 and put A = 13, B = 123, C = 132
and D = 13313. By Theorem 1 it is easy to check that A,B,C ∈Mn. We also
have that A ⊑∗ C, B ⊑∗ C, A ⊑∗ D, B ⊑∗ D and C 6⊑∗ D, D 6⊑∗ C.

To prove the statement we will show that the least upper bound of A and B
does not exist in Mn. Assume to the contrary that E = A ∨ B exists. By the
existence of D, E 6= C. As E ⊑∗ C must be valid, we have E(t) < C(t) for
some t ∈ Z

+. Without loss of generality we may assume that t is minimal with
this property. A simple calculation shows that the first three elements of E
has to be given by 1, 3, 2. This yields that t ≥ 4 and E(t− 1) = 2, E(t) = 1.
However, then we have E(t− 1) + E(t) < E(1) + E(2) which contradicts the
metricity of E. Thus A ∨B does not exist, and the proof is complete. 2

The following theorem shows that contrary to the higher dimensional case,
metrical 2D-neighborhood sequences form a nice structure with respect to ⊒∗.
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Theorem 7 (M2,⊒∗) is a complete lattice. Moreover, for any subset M of
M2 we have

∧

M =
∧

S2
M .

PROOF. Let M be an arbitrary subset of M2. In view of Lemma 2,
∧

S2
M

exists, so we put D = (D(i))∞i=1 =
∧

S2
M . We prove that D =

∧

M also holds,
i.e. D ∈M2. Suppose to the contrary that D 6∈M2. Then by Theorem 1 there
exist k, l ∈ Z

+ such that

k
∑

i=1

D(i) >
l+k
∑

i=l+1

D(i)

holds. Further, using Lemma 2 we get that for some A ∈M

l+k
∑

i=1

D(i) =
l+k
∑

i=1

A(i) and also
l
∑

i=1

D(i) ≤
l
∑

i=1

A(i).

From these assertions we deduce that

k
∑

i=1

D(i) +
l
∑

i=1

D(i) >
l+k
∑

i=1

D(i) =
l+k
∑

i=1

A(i) ≥
l
∑

i=1

D(i) +
l+k
∑

i=l+1

A(i),

which by the metricity of A gives

k
∑

i=1

D(i) >
k
∑

i=1

A(i).

However, this contradicts D ⊑∗ A, and the theorem follows. 2

It is an interesting property of M2 that while for any A,B ∈ M2 we have
A ∧S2

B ∈ M2, the same statement does not hold for A ∨S2
B. For example,

if we choose A = 112, B = 111222 then it is easy to verify that A,B ∈ M2

and A∨S2
B = 112122111 . . . , which sequence does not belong to M2. On the

other hand, the least upper bound of A and B also exists in M2, since M2 is a
complete lattice. By Lemma 2 it is easy to determine A∧B for any A,B ∈M2,
but how to determine A ∨ B? The following theorem gives an answer to this
problem in a more general form.

Theorem 8 For any A = (A(i))∞i=1 ∈ S2 there exists a B = (B(i))∞i=1 ∈ M2

with B ⊒∗ A, such that for any C ∈M2 with C ⊒∗ A, C ⊒∗ B holds.
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Moreover, B(1) = A(1) and if the first k elements of B are already given, then

B(k + 1) =































1,
if

k+1
∑

i=1
A(i) ≤

k
∑

i=1
B(i) + 1 and

l
∑

i=1
B(i) ≤

k
∑

i=k−l+2
B(i) + 1 for every l = 1, . . . , k,

2, otherwise.

PROOF. We show that the sequence B = (B(i))∞i=1 defined by the inductive
procedure in the statement meets the requirements of the theorem. We clearly
have that

l
∑

i=1

B(i) ≤
k+1
∑

i=k−l+2

B(i) for any k ∈ Z
+ and l ∈ {1, . . . , k},

whence B ∈M2. Further, as
k
∑

i=1
A(i) ≤

k
∑

i=1
B(i) holds for any k ∈ Z

+, we also

have B ⊒∗ A.

Finally, assume that there exists a C = (C(i))∞i=1 ∈ M2, such that C ⊒∗ A,

and C 6⊒∗ B. Then choose the minimal t ∈ Z
+ for which

t
∑

i=1
B(i) >

t
∑

i=1
C(i).

We have that t ≥ 2, B(t) = 2, C(t) = 1 and

t−1
∑

i=1

B(i) =
t−1
∑

i=1

C(i). (1)

Since B(t) = 2, from the inductive condition we infer that either
t
∑

i=1
A(i) >

t−1
∑

i=1
B(i) + 1, or

l
∑

i=1
B(i) >

t−1
∑

i=t−l+1
B(i) + 1 for some l ∈ {1, . . . , t − 1}. In the

first case (1) and C(t) = 1 yield that C 6⊒∗ A, which is a contradiction. In the
second case, using the appropriate l, by the minimality of t

t−l
∑

i=1

B(i) ≤
t−l
∑

i=1

C(i) (2)

holds. We also have

l
∑

i=1

C(i) ≥
l
∑

i=1

B(i) >
t−1
∑

i=t−l+1

B(i) + 1. (3)

Putting together (1) and (2) we obtain

t−1
∑

i=t−l+1

B(i) ≥
t−1
∑

i=t−l+1

C(i). (4)
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Combining (3) and (4) we get

l
∑

i=1

C(i) >
t−1
∑

i=t−l+1

C(i) + 1 =
t
∑

i=t−l+1

C(i),

which contradicts C ∈M2, and the theorem follows. 2

Let us define the metrical closure of the neighborhood sequence A ∈ S2 as
the sequence B given by the above theorem. Then in case of B1, B2 ∈ M2,
B1∨B2 is clearly the metrical closure of B1∨S2

B2. Now we provide an infinite
procedure which produces the metrical closure of A = (A(i))∞i=1 ∈ S2. To
simplify the description, we define the concept of switching and switching
back as changing a sequence element from 1 to 2 and vice versa, respectively.

Moreover, we call a finite word (C(i))k
i=1 metrical if

l
∑

i=1
C(i) ≤

k
∑

i=k−l+1
C(i)

holds for every l ∈ {1, . . . , k}.
1: c← 0 {Invoking the counting variable for switching.}
2: k ← 1 {Invoking the slice length for checking metricity.}
3: B(k)← A(k) {Setting the next element of the metrical closure B of A.}
4: if (B(i))k

i=1 is not metrical then {Checking metricity for k.}
5: B(k)← 2 {Making (B(i))k

i=1 metrical by switching.}
6: c← c + 1 {Updating the number of switchings.}
7: else if B(k) = 2 and c > 0 then {Switching back if possible.}
8: if ’(B(i))k−1

i=1 1’ is metrical then {Preserving metricity.}
9: B(k)← 1 {Switching back B(k).}

10: c← c− 1 {Updating the number of switchings.}
11: end if

12: end if

13: k ← k + 1 {Increasing the slice length for the next metricity check.}
14: go to 3: {Finding the next element of B.}

Note that in the above algorithm the counter of switchings for the k-th step can
be calculated as c = #{l | B(l) = 2, 1 ≤ l ≤ k}−#{l | A(l) = 2, 1 ≤ l ≤ k}.
As one can see, this procedure is a kind of greedy algorithm: it keeps c as small
as possible, beside keeping the metricity. Using Theorem 8, it is easy to check
that this algorithm is correct. However, for the convenience of the reader we
include a simple example to illustrate how the algorithm works.

Example 9 Let A = 121111222112 ∈ S2. In Table 1 we can follow the steps of
the algorithm for creating the metrical closure of the non-metrical sequence A.
It can be observed how the counter c for the number of switchings changes and
how the metrical behavior of B(k) is guaranteed by the algorithm. Especially,
for k = 4, 6, 10 we can see how metricity is achieved by choosing the 2 value
at these indices, while for k = 7, 9, 13 we can see examples for switching back
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to obtain the least upper bound. For k = 8 we can see the case when switching
back is not possible without violating metricity.

Table 1
Generating algorithmically the metrical closure of the non-metrical neighborhood
sequence A = 121111222112. Parameters k and c denote the number of steps and
switchings, respectively.

k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 k ≥ 15

A(k) 1 2 1 1 1 1 2 2 2 1 1 2 2 2 2

B(k) 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2

c 0 0 0 1 1 2 1 1 0 1 1 1 0 0 0

By the help of Theorem 8 and the above algorithm, we can easily show that
the distributive property does not hold for the lattice (M2,⊒∗).

Proposition 10 The lattice (M2,⊒∗) is not distributive.

PROOF. Let A = 112112112, B = 1112221112 and C = 1122112212. By
Theorem 1, Lemma 2 and Theorem 8 we obtain that A,B,C ∈M2, A∨S2

B =
1121221112, and A ∨ B = 11212211212. Moreover, we get (A ∨ B) ∧ C =
11212121212. On the other hand, (A ∧ C) ∨ (B ∧ C) = 1121212112. That is,
(A ∨ B) ∧ C 6= (A ∧ C) ∨ (B ∧ C) in M2, whence the distributive property
fails. 2

To close our investigations on the lattice structure of M2 we present Figure 1
to illustrate how the lattice (M2,⊒∗) is situated in (S2,⊒∗).

Fig. 1. The structure of (M2,⊒∗) inside (S2,⊒∗). Here M is an arbitrary subset of
M2.
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4 Topological properties of Mn

In this section we investigate the topological properties of the set Mn. For this
purpose we introduce a metric on this set by following the line of (Hajdu and
Hajdu, 2003).

Let n be an integer with n ≥ 2. The set ∆ = {δj | δj : Z
+ → R, j = 1, . . . , n}

is called a weight system if the following three conditions hold:

• δj(i) > 0 (j ∈ {1, . . . , n}, i ∈ Z
+),

•
∞
∑

i=1
δj(i) <∞ (j ∈ {1, . . . , n}),

• δj is monotone decreasing (j ∈ {1, . . . , n}).

For two sequences A,B ∈ Sn with A = (A(i))∞i=1 and B = (B(i))∞i=1, put

̺∆(A,B) =
1

n

n
∑

j=1

∞
∑

i=1

|A(i)−B(i)|δj(i).

Then (Sn, ̺∆) is a bounded, complete metric space (cf. Theorems 17 and 18
in (Hajdu and Hajdu, 2003)). Moreover, as clearly (Sn, ̺∆) is the product of
compact spaces, it is also compact.

We note that the metric ̺∆ is defined in this way to fit the behavior of the
neighborhood sequences in various subspaces. This is very useful e.g. in con-
nection with the relation ⊒∗. For details see (Hajdu and Hajdu, 2003).

The following statement shows that Mn is an ”isolated” subset of Sn.

Theorem 11 The set Mn\{n} is a perfect subset of the metric space (Sn, ̺∆).

PROOF. Let A ∈ Mn with A 6= n, and write A = (A(i))∞i=1. Suppose first
that A terminates with n-s, that is, for some k0 ∈ Z

+ we have A(k) = n
whenever k > k0. For each k > 2k0 put Bk = A(1) . . . A(k), and let Bk = 1 for
k = 1, . . . , 2k0. Then by Theorem 1 the Bk are metrics, and clearly lim

k→∞
Bk =

A. So A is an accumulation point of Mn \ {n}. In the opposite case when
A does not terminate with n-s, for every k ∈ Z

+ put Bk = A(1) . . . A(k)n.
Then again, the Bk are metrics, and lim

k→∞
Bk = A. This shows that A is an

accumulation point of Mn \ {n}.

Let now B ∈ Sn \Mn, and write B = (B(i))∞i=1. Then for some k, l ∈ Z
+ and

j ∈ {1, . . . , n} we have
k
∑

i=1
B(j)(i) >

l+k−1
∑

i=l

B(j)(i). This shows that for any A ∈
Mn the first l +k−1 elements of A cannot be given by B(1), . . . , B(l +k−1).
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Hence ̺∆(A,B) ≥ δn(l+k−1) > 0 for all A ∈Mn, so B is not an accumulation
point of Mn \ {n}.

Finally, put B = n. Then, for every A ∈Mn\{n} we have ̺∆(A,B) ≥ δn(1) >
0, and the theorem follows. 2

Corollary 12 Mn is a compact subset of (Sn, ̺∆).

PROOF. The above theorem immediately yields that Mn is closed. As Sn is
compact, the statement follows. 2

5 Densities of the elements of metrical neighborhood sequences

The densities of the elements can be nicely used to describe the behavior of
neighborhood sequences, see e.g. (Hajdu, 2003) for a geometrical characteriza-
tion. In this section we prove that if A ∈Mn then each number from {1, . . . , n}
has a density in A. Moreover, we show that these densities can be prescribed
arbitrarily. To formulate our results in this direction we need to introduce
some further notation.

Let n be an integer with n ≥ 2. For A ∈ Sn, k1, k2 ∈ Z
+ and j ∈ {1, . . . , n}

let
j(A, k1, k2) = #{i | A(i) = j, k1 ≤ i ≤ k2}.

We define the density sj(A) of the j-s in A as

sj(A) = lim
k→∞

j(A, 1, k)

k
,

if this limit exists. Finally, for any real number x let [x] denote the integer
part of x, i.e. the largest integer which is less than or equal to x.

First we prove that in a metrical neighborhood sequence all elements have
densities.

Theorem 13 For every A ∈Mn and j ∈ {1, . . . , n} the density sj(A) exists.

PROOF. Let A ∈ Mn. We proceed by induction. First we prove that s1(A)

exists. Write s0 = lim inf
k∈Z+

1(A,1,k)
k

. We show that s1(A) = s0. In case of s0 = 1

we are done. Otherwise, let ε be any positive real number. We prove that
there exists some integer k0 such that k > k0 implies 1(A,1,k)

k
< s0 + ε. This is

clearly sufficient to prove our statement. By the definition of s0 we can find an
N ∈ Z

+ such that 1(A,1,N)
N

< s0+ ε
2
. Further, let t be an integer with t > 4

ε
. Put
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k0 = tN , and take any integer k with k > k0. Then we can write k = mN + l
with m ≥ t and 0 ≤ l < N . By the choice of t we have

∣

∣

∣

∣

∣

1(A, 1, k)

k
− 1(A, 1,mN)

mN

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

1(A,mN + 1,mN + l)mN − 1(A, 1,mN)l

mN(mN + l)

∣

∣

∣

∣

∣

<
ε

2
. (5)

On the other hand, for any i with i = 2, . . . ,m

1(A, 1, N)+
n
∑

j=2

j(A, 1, N) = 1(A, (i− 1)N +1, iN)+
n
∑

j=2

j(A, (i− 1)N +1, iN)

holds. Moreover, by Theorem 1 we have
N
∑

h=1
A(2)(h) ≤

iN
∑

h=(i−1)N+1
A(2)(h), which

implies

1(A, 1, N)+2
n
∑

j=2

j(A, 1, N) ≤ 1(A, (i−1)N+1, iN)+2
n
∑

j=2

j(A, (i−1)N+1, iN).

With the help of the previous two formulas, a simple calculation yields

1(A, 1, N)

N
≥ 1(A, 1,mN)

mN
. (6)

Combining (5) and (6), we deduce that

1(A, 1, k)

k
< s0 + ε,

which proves that s1(A) exists.

Assume now that for some r with r ∈ {2, . . . , n} the densities sj(A) exist for

any j ∈ {1, . . . , r − 1}. Put s0 = lim inf
k∈Z+

r(A,1,k)
k

. We prove that sr(A) = s0. In

case of s0 = 1 we are done again. Otherwise, take an arbitrary positive ε. Let
K be an integer such that for any k > K and j ∈ {1, . . . , r − 1}

∣

∣

∣

∣

∣

j(A, 1, k)

k
− sj(A)

∣

∣

∣

∣

∣

<
ε

2(r − 1)(r + 2)

holds. Fix a positive integer N with N > K such that r(A,1,N)
N

< s0+
ε
2
. Further,

take an integer t with t > 4
ε
, and write k0 = tN . Note that k0 depends only

on ε. Let k be an arbitrary integer with k > k0, and write k = mN + l with
m ≥ t and 0 ≤ l < N . Then by the choice of t, a simple calculation yields
that

∣

∣

∣

∣

∣

r(A, 1, k)

k
− r(A, 1,mN)

mN

∣

∣

∣

∣

∣

=
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=

∣

∣

∣

∣

∣

r(A,mN + 1,mN + l)mN − r(A, 1,mN)l

mN(mN + l)

∣

∣

∣

∣

∣

<
ε

2
.

Clearly, for any i ∈ {1, . . . ,m} we have

n
∑

j=1

j(A, 1, N) =
n
∑

j=1

j(A, (i− 1)N + 1, iN).

Further, Theorem 1 yields that
N
∑

h=1
A(r+1)(h) ≤

iN
∑

h=(i−1)N+1
A(r+1)(h), whence

r
∑

j=1

j · j(A, 1, N) + (r + 1)
n
∑

j=r+1

j(A, 1, N) ≤

≤
r
∑

j=1

j · j(A, (i− 1)N + 1, iN) + (r + 1)
n
∑

j=r+1

j(A, (i− 1)N + 1, iN).

The above assertions by a simple calculation yield that

r−1
∑

j=1

(r + 1− j)

(

j(A, 1, N)

N
− j(A, 1,mN)

mN

)

≥ r(A, 1,mN)

mN
− r(A, 1, N)

N
.

By the choice of K and N this immediately gives

r(A, 1,mN)

mN
≤ r(A, 1, N)

N
+

ε

2
.

Thus
r(A, 1, k)

k
≤ s0 + ε,

which shows that sr(A) exists. Hence the theorem follows by induction. 2

Now we show that the density values can be prescribed arbitrarily, as well.

Theorem 14 Let n be an integer with n ≥ 2, and let α1, . . . , αn be non-
negative real numbers with α1 + · · ·+αn = 1. Then there exists a neighborhood
sequence An in Mn such that for every j ∈ {1, . . . , n} we have sj(An) = αj.

PROOF. We prove the theorem by induction on n. For n = 2 let A2 be the
unique sequence in S2 defined by 2(A2, 1, k) = [kα2] for each k ∈ Z

+. By
Lemma 2 of (Hajdu and Hajdu, 2004) we know that A2 is metrical. Moreover,
by the definition of A2 for every k, l ∈ Z

+ we have that

2(A2, 1, k) + 2(A2, 1, l) ≤ 2(A2, 1, k + l). (7)

Suppose that t ≥ 3 and α1, . . . , αt are given non-negative real numbers with
α1 + · · ·+ αt = 1. Assume that in the metrical neighborhood sequence At−1 ∈
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St−1 the densities of all the numbers from {1, . . . , t − 1} exist and we have
sj(At−1) = αj (j = 1, . . . , t− 2) and st−1(At−1) = αt−1 + αt. In view of (7) we
may further assume that for any k, l ∈ Z

+

(t− 1)(At−1, 1, k) + (t− 1)(At−1, 1, l) ≤ (t− 1)(At−1, 1, k + l) (8)

holds. If αt = 0 then simply put At = At−1, and note that At is metrical,
and sj(At) = αj (j = 1, . . . , t). Otherwise, we define the unique neighborhood
sequence At ∈ St by replacing some of the t − 1 elements of At−1 by t such
that for every k ∈ Z

+ we have

t(At, 1, k) =

[

(t− 1)(At−1, 1, k)
αt

αt−1 + αt

]

.

By (8) and the definition of At we easily get that for every k, l ∈ Z
+

t(At, 1, k) + t(At, 1, l) ≤ t(At, 1, k + l)

holds, which also shows the validity of (8) for t. Moreover, by Theorem 1 we
have

t−1
∑

j=1

j · j(At−1, 1, k) ≤
t−1
∑

j=1

j · (j(At−1, l + 1, l + k)− j(At−1, 1, l)) ,

again for any k, l ∈ Z
+. Combining the above two inequalities and using the

definition of At, by a simple calculation we obtain that for every k, l ∈ Z
+

t
∑

j=1

j · j(At, 1, k) ≤
t
∑

j=1

j · (j(At, l + 1, l + k)− j(At, 1, l))

holds. In view of the metricity of Ai (i = 2, . . . , t − 1), by Theorem 1 this
inequality implies that At ∈ Mt. Moreover, a simple calculation yields that
we have sj(At) = αj for each j ∈ {1, . . . , t}. Hence the theorem is valid for all
n ≥ 2. 2

As a trivial and immediate consequence of the above theorem we obtain that
the cardinality of Mn is continuum.

6 Prefixes of metrical neighborhood sequences

In this section we investigate the prefixes of metrical neighborhood sequences.
We introduce the following notation. For any positive integer k, let Sn,k denote
the set of words of length k, consisting of elements from {1, . . . , n}. Further,

14



letMn,k be the subset of Sn,k containing all words which are prefixes of some
metrical sequences from Mn. Our first result shows thatMn,k is only a minor
subset of Sn,k.

Theorem 15 For any n ∈ Z
+ we have

lim
k→∞

|Mn,k|
|Sn,k|

= 0.

PROOF. First observe that |Mn,k+1| ≤ n · |Mn,k| for any n, k ∈ Z
+. Hence,

as |Sn,k| = nk, we have
|Mn,k+1|
|Sn,k+1|

≤ |Mn,k|
|Sn,k|

,

that is, |Mn,k|/|Sn,k| is monotone decreasing in k.

Let i, j ∈ Z
+ be arbitrary. Observe that if A ∈ Mn,ij then either the first j

elements of A are 1’s, or A does not contain a subword which is a block of j
consecutive 1’s. This immediately gives

|Mn,ij| ≤ nij−j + (nj − 1)i.

As |Sn,ij| = nij, we have

|Mn,ij|
|Sn,ij|

≤ nij−j + (nj − 1)i

nij
= n−j +

(

1− 1

nj

)i

. (9)

Now let ε > 0 be arbitrary and choose a j′ ∈ Z
+ such that n−j′ < ε/2, and

then an i′ ∈ Z
+ with (1− 1/nj′)i′ < ε/2. Then (9) implies that

|Mn,i′j′ |
|Sn,i′j′|

< ε.

By the monotonity of |Mn,k|/|Sn,k| the proof is complete. 2

Remark 16 For any n, k ∈ Z
+ let Mn,k denote the set of metrical neigh-

borhood sequences from Mn, having a period of length k. As clearly |Mn,k| ≤
|Mn,k| we also have

lim
k→∞

|Mn,k|
|Sn,k|

= 0

for any n ∈ Z
+.

Now we present some numerical data which strongly indicate that in spite
of the above theorem, the number of elements of Mn,k and Mn,k grow expo-
nentially with k. (Note that |Sn,k| = nk.) We mention that in 2D, Das et al.
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(1987a) have presented similar data for smaller range. For 2D sequences the
results of our calculations are summarized in Table 2.

Table 2
Number of elements of M2,k andM2,k.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

|S2,k| 2 4 8 16 32 64 128 256 512 1 024 2 048 4 096 8 192 16 384 32 768 65 536

|M2,k| 2 3 4 6 8 13 18 29 44 71 110 181 290 483 790 1 330

|M2,k| 2 3 5 8 14 23 41 70 125 218 395 697 1 273 2 279 4 185 7 568

k 17 18 19 20 21 22 23 24 25

|S2,k| 131 072 262 144 524 288 1 048 576 2 097 152 4 194 304 8 388 608 16 777 216 33 554 432

|M2,k| 2 212 3 776 6 360 10 982 18 704 32 611 56 080 98 598 171 068

|M2,k| 13 997 25 500 47 414 87 024 162 456 299 947 562 345 1 043 212 1 962 589

Table 2 suggests that the number of elements in M2,k andM2,k grow exponen-
tially. Based upon our data, using the software package SPSSR© 1 we obtained
the approximations shown in Figure 2. We find that the exponential functions
0.7501 · exp(0.4783 · k), and 0.7541 · exp(0.5821 · k) fit well to the cardinality
of the sets M2,k, andM2,k, respectively.

(a) (b)

Fig. 2. The exponential increment of the number of (a) M2,k approximated by
0.7501 · exp(0.4783 · k), (b) M2,k approximated by 0.7541 · exp(0.5821 · k).

For interest we mention that exp(0.4783) = 1.6133 . . . is rather close to the
golden ratio (1 +

√
5)/2 = 1.6180 . . . , and that there might be some connec-

tion between the sequence M2,k and the Fibonacci sequence. This relation is
somewhat supported also by Table 2.

Finally, in the following Table 3 we give some data concerning the higher
dimensional cases. Based on this table, it is very probable that both Mn,k and
Mn,k grow exponentially in k, for any fixed n ∈ Z

+.

1 SPSS for Windows 6.0+ Base System, Regression Models, SPSS Inc., Chicago.
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Table 3
Number of elements of Mn,k andMn,k for 3 ≤ n ≤ 8.

k 1 2 3 4 5 6 7 8 9 10 11 12

|S3,k| 3 9 27 81 243 729 2 187 6 561 19 683 59 049 177 147 531 441

|M3,k| 3 6 10 20 34 74 136 295 606 1 329 2 839 6 480

|M3,k| 3 6 14 31 77 179 456 1 115 2 879 7 258 19 115 49 090

|S4,k| 4 16 64 256 1 024 4 096 16 384 65 536 262 144 1 048 576

|M4,k| 4 10 20 50 103 280 636 1 737 4 439 12 319

|M4,k| 4 10 30 85 273 820 2 711 8 612 29 015 95 482

|S5,k| 5 25 125 625 3 125 15 625 78 125 390 625

|M5,k| 5 15 35 105 254 826 2 230 7 328

|M5,k| 5 15 55 190 748 2 754 11 181 43 652

|S6,k| 6 36 216 1 296 7 776 46 656 279 936

|M6,k| 6 21 56 196 544 2 058 6 425

|M6,k| 6 21 91 371 1 729 7 536 36 259

|S7,k| 7 49 343 2 401 16 807 117 649

|M7,k| 7 28 84 336 1 052 4 536

|M7,k| 7 28 140 658 3 542 17 833

|S8,k| 8 64 512 4 096 32 768 262 144

|M8,k| 8 36 120 540 1 882 9 108

|M8,k| 8 36 204 1 086 6 630 37 859
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