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1. Introduction

Many important and interesting problems of mathematics are related to the
distribution of irreducible elements in some special structures. It is well-known
that the number of primes in N is infinite. However, the set of prime numbers
is of density zero and the gap between two consecuitve primes can be arbitrarily
large. In Z[x] there are infinitely many irreducible polynomials. Nevertheless, it
seems that there are only few common properties of the distribution of irreducible
elements in Z and in Z[x]. Indeed, if we denote by P (N) resp. R(N) the number
of polynomials resp. irreducible polynomials in Z[x] of given degree and height at
most N , then we have (cf. [7])

R(N)
P (N)

→ 1 as N →∞.

In other words ’almost all’ polynomials in Z[x] are irreducible.
The above result suggests that the ’gap’ between ’neighbouring’ irreducible poly-

nomials in Z[x] cannot be too large. Perhaps these facts led P. Turán in 1962 to
propose the following interestring problem. To formulate his problem, we need the
concept of the length |P | of a polynomial P (x) = anxn + ...+a1x+a0 ∈ Z[x] which
is defined by the expression

|P | =
n∑

k=0

|ak| .

By the distance of P,Q ∈ Z[x] we mean |P −Q|. It follows easily from Eisenstein’s
theorem that for given P ∈ Z[x] of degree n there is an irreducible polynomial
Q ∈ Z[x] of degree n such that |P − Q| ≤ n + 2. P. Turán asked the following
(cf.[9]):

Does there exist an absolute constant C1 such that for every P (x) ∈ Z[x] of
degree n, there is a polynomial Q(x) ∈ Z[x] irreducible over Q, satisfying deg(Q)
≤ n and |P −Q| ≤ C1?

This problem is very difficult. It turns to be somewhat easier if one removes the
condition deg(Q) ≤ n. In 1970, A. Schinzel [10] proved the following deep and
important theorem:
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Theorem A. (A. Schinzel [10]) For any nonzero integers a, b and any polynomial
P with integral coefficients, such that P (0) 6= 0 and P (1) 6= −a − b, there exist
infinitely many irreducible polynomials axn + bxm + P (x) with n > m > deg(P ).
One of them satisfies

n < exp{(5 deg(P ) + 2 log |ab|+ 7)(||P ||+ a2 + b2)},

where ||P || denotes the sum of the squares of the coefficients of P .

As a cosequence of this theorem Schinzel showed that for every P ∈ Z[x] of
degree n there are infinitely many irreducible Q ∈ Z[x] such that

|P −Q| ≤
{

2 if P (0) 6= 0,

3 otherwise.

Further, one of these irreducible polynomials Q satisfies

deg(Q) ≤ e(5n+7)(|P |2+3).

This result gives a partial answer to Turán’s question.
For the shake of completeness, now we present another, similar problem, which

was proposed in 1984 by M. Szegedy (cf. [5]). He asked the following:
Does there exist a constant C2 depending only on n such that for any P ∈ Z[x]

of degree n, P (x) + b is irreducible over Q for some b ∈ Z with |b| ≤ C2?
This seems also to be a very hard question. In 1994, K. Győry [5] succeeded

to give an affirmative answer for Szegedy’s problem in case of monic polynomials.
This is a consequence of his following

Theorem B. (K. Győry [5]) Let P ∈ Z[x] be a polynomial of degree n with leading
coefficient a0. There exist an effectively computable constant C3 depending only on
n and ω(a0), and b ∈ Z with |b| ≤ C3 for which P (x) + b is irreducible over Q.
(Here ω(a0) denotes the number of distinct prime divisors of a0.)

We remark that in [5] C3 is given explicitly.
In our recent paper [1] we gave upper bounds for the Turán constant C1 for

monic polynomials P of degree not greater than 22. In fact we could prove that
for such polynomials C1 = 4 can be chosen. Slightly improving our algorithms and
using more powerful computers now we extend our result to polynomials of degree
at most 24.

2. New results

For a positive integer n denote by cn the smallest integer with the property that
for any monic polynomial P ∈ Z[x] of degree n one can choose an irreducible monic
polynomial Q ∈ Z[x] of degree n, such that |P − Q| ≤ cn. One can verify easily
that for every positive n, cn exists. Using this notation, our result in [1] says that

cn ≤ 4 for every positive integer n ≤ 22.

We prove the following extension.
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Theorem. For every positive integer n ≤ 24 and for every monic polynomial P ∈
Z[x] of degree n there exists an irreducible monic polynomial Q ∈ Z[x] of degree n
such that

|P −Q| ≤ 4.

For lower degrees, our computations imply a slightly better result. In fact we
could prove that c1 = 0, c2 = 1, cn = 2 for 3 ≤ n ≤ 6, cn ≤ 3 for 7 ≤ n ≤ 12, and
cn ≤ 4 for 13 ≤ n ≤ 24 (see our Table I). Summarizing these assertions, we can
state that for any positive integer n ≤ 24, we have cn ≤ 4.

We remark that in principle, results on the distribution of irreducible polynomials
(mod p) (see e.g. [2], [3], [4], [6] or [8]) could make it easier to determine the
Turán constant, at least for fixed degree. However, these results contain asymptotic
formulas, hence it seems to be difficult to apply them in practical computations.

The investigation of Szegedy’s constants C2 by computational methods seems to
be much more difficult.

In view of our result mentioned above, it suffices to prove our Theorem for
polynomials of degre 23 and 24. As the proof is similar to the proof given in [1] for
polynomials of degree ≤ 22, we do not detail it now. However, for the convenience
of the reader we give an outline of the method used. For this purpose we need some
further notation.

Let p be any prime. For every polynomial T ∈ Z[x] denote by Tp(x) the corre-
sponding polynomial in Zp[x]. If T (x) is of degree k, then it has a unique represen-
tation of the form

k∑
i=0

aix
i ,

with −p/2 < ai ≤ p/2 for i = 0, ..., k. Now by the p-length |T |p of T (x) we mean

the number
k∑

i=0

|ai|. The p-distance of S, T ∈ Z[x] is |S − T |p. Denote by cn(p) the

least positive integer such that for every monic P ∈ Zp[x] of degree n one can find
an irreducible monic Q ∈ Zp[x] of degree n with |P −Q|p ≤ cn(p).

The main idea of the proof is the following. If Q ∈ Z[x] is a monic polynomial
which is irreducible (mod p) for some prime p, then Q(x) must be irreducible in
Z[x], too. This implies that if a monic polynomial P ∈ Z[x] and a prime p are
given, then for any Q ∈ Z[x] which is (mod p) irreducible and monic and has the
property deg(Q) = deg(P ), there exists an irreducible monic polynomial R ∈ Z[x]
of the same degree as P , such that |R−P | is not greater than the distance of Q and
P in Z[x] (mod p). Hence to get bounds for Turán’s constant for monic polynomials
(of fixed degree) it is sufficent to deal with polynomials in Z[x] (mod p), for some
prime p.

In our algorithms we worked with the primes 2 and 3. However, the prime p = 3
could be used only for small values of the degree n (n ≤ 12), because in this case the
number of polynomials to be considered is much larger than for p = 2. Nevertheless,
even in this simplest case of p = 2, we had to stop at the degree n = 24. The reason
of this is the fact that the number of polynomials in Zp[x] grows exponentially with
the degree.

In the following two tables we summarize our results. The first one is in fact an
extended version of Table IV of our paper [1], and contains estimates concerning the
values of cn for 1 ≤ cn ≤ 24. The second table, similarly to Table I of [1], contains
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so called ’extreme polynomials’, which show that the coresponding values of cn(2)
are sharp. We conjecture that for every n ≥ 10 there exists an extreme polynomial
Pn(x) ∈ Z2[x] of degree n such that Pn(x) − xn + 1 is irreducible (mod 2). For
n = 23 and 24 we found extreme polynomials having this property (see Table II).

We mention that in [1] we published another table, presenting the result of our
computation using the prime p = 3.

Table I.

Degree n Bound for cn

1 0
2 1
3 2
4 2
5 2
6 2
7 3
8 3
9 3
10 3
11 3
12 3
13 4
14 4
15 4
16 4
17 4
18 4
19 4
20 4
21 4
22 4
23 4
24 4

Table II.

n Extreme polynomials
23 x23 + x21 + x20 + x16 + x15 + x11 + x10

24 x24 + x23 + x7 + x6 + x2
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remarks.

References
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