
Velocity and Distance of NeighbourhoodSequencesAndr�as Hajdu, Lajos Hajduhajdua@math.klte.hu, hajdul@math.klte.huInstitute of Mathematics and Informatics, University of DebrecenH-4010 Debrecen P.O.Box 12.AbstractDas et al. [2] de�ned the notion of periodic neighbourhood sequences. They alsointroduced a natural ordering relation w� for such sequences. Fazekas et al. [3] ge-neralized the concept of neighbourhood sequences, by dropping periodicity. Theyalso extended the ordering to these generalized neighbourhood sequences. The re-lation w� has some unpleasant properties (e.g., it is not a complete ordering). Incertain applications it can be useful to compare any two neighbourhood sequences.For this purpose, in the present paper we introduce a norm-like concept, called ve-locity, for neighbourhood sequences. This concept is in very close connection withthe natural ordering relation. We also de�ne a metric for neighbourhood sequences,and investigate its properties.Key words:Digital Geometry, Neighbourhood Sequences, Distance, MetricPACS: 68U101 IntroductionDistance functions are used in many parts of digital geometry. They are usu-ally de�ned by digital motions, when we can move in the digital space from onepoint to another, if they are neighbours in some sense. Rosenfeld and Pfaltz[7] introduced two types of motions in Z2, the cityblock and chessboard moti-ons. The cityblock motion allows only horizontal and vertical steps, while thechessboard motion diagonal movements as well. By these motions Rosenfeldand Pfaltz de�ned the distances d4 and d8, respectively, as the number of stepsneeded to get from one point to another. To obtain a better approximation ofthe Euclidean distance they recommended the alternate use of the cityblockand chessboard motions.



By allowing arbitrary periodic mixture of the cityblock and chessboard moti-ons, Das et al. [2] introduced the concept of periodic neighbourhood sequences,and generalized it to arbitrary dimension. A distance function can be attachedto any neighbourhood sequence A by de�ning the distance of two points asthe number of A-steps needed to get from one of them to the other. In [2] theauthors provided a criterion to decide when the distance function correspon-ding to A is a metric. They also introduced a natural ordering relation on theset of periodic neighbourhood sequences in the following way. Given two suchsequences A and B, A is "faster" than B, if for every two points p and q, theA-distance is less than or equal to the B-distance of these points. The nameof this relation expresses that in this case A spreads faster in the digital spacethan B. Das [1] studied the structure of the set of periodic neighbourhoodsequences with respect to this natural ordering.By dropping the condition of periodicity, A. Fazekas et al. [3] generalized theconcept of neighbourhood sequences. They extended the "faster" relation tothese generalized neighbourhood sequences, and investigated its properties. Itturned out that this natural ordering has some unpleasant properties. It failsto be a complete ordering on the set of neighbourhood sequences, moreover,the structure obtained is not even a lattice in higher dimension. However, incertain applications it can be useful to compare any two neighbourhood se-quences, i.e. to decide which one spreads "faster". For this purpose, in thisarticle we introduce a norm-like concept, called velocity, on the set of neigh-bourhood sequences, and investigate its properties. This concept has to beintroduced in a way to �t the relation "faster", so we need some prelimina-ries before de�ning velocity. Further, we de�ne a metric for neighbourhoodsequences.In this paper we deal with neighbourhood sequences de�ned on Zn. However,there can be applications, where the grid points form another kind of structure(e.g., triangular or hexagonal). For a survey on planar grids, see [6]. Theconcept of neighbourhood sequences can be easily generalized to these grids,see [5] for the cases of triangular and hexagonal grids. The investigations andconcepts of the present paper can be extended to these structures, too.The structure of this paper is as follows. In the second section we give ournotation, and provide some properties of the concepts introduced. In the thirdsection we clarify which conditions should be met by the notion of velocity. InSection 4 the concept of velocity is introduced, and some important propertiesof this notion are proved. In Section 5 we give some theoretical examples toillustrate the behaviour of velocity, and in the sixth section we show howthis concept can be applied for distributing information in a general networkmodel. In Section 7 we de�ne a metric on the set of neighbourhood sequences,and study its properties. 2



2 Notation and basic conceptsIn this section, we recall some de�nitions and notation from [2] and [3] concer-ning neighbourhood sequences. In what follows, n denotes a positive integer.De�nition 1 Let p be a point in Zn. The i-th coordinate of p is indicated byPri(p) (1 � i � n). Let k be an integer with 0 � k � n. The points p; q 2 Znare called k-neighbours, if the following two conditions hold:� jPri(p)� Pri(q)j � 1 (1 � i � n),� nPi=1 jPri(p)� Pri(q)j � k.The sequence A = (a(i))1i=1, where 1 � a(i) � n for all i 2 N , is called ann-dimensional (shortly nD) neighbourhood sequence. A is periodic, if for somel 2 N , a(i+ l) = a(i) (i 2 N). For every i 2 N and j = 1; : : : ; n putaj(i) = min(a(i); j) and fAj (i) = iXk=1 aj(k):The set of the nD-neighbourhood sequences will be denoted by Sn.Let p; q 2 Zn, and A 2 Sn. The point sequence p = p0; p1; : : : ; pm = q, wherepi�1 and pi are a(i)-neighbours in Zn (1 � i � m), is called an A-path fromp to q. The length of the A-path is m. The A-distance d(p; q;A) of p and q isde�ned as the length of the shortest A-path between them.A natural partial ordering relation on Sn can be introduced in the followingway (see [2] and [3]). For A;B 2 Sn we de�ne the relation w� byA w� B , d(p; q;A) � d(p; q;B) for all p; q 2 Zn:In case of A w� B we say that A is faster than B. There is a strong connectionbetween this relation and the values fj(i), shown by the following result from[3].Theorem 2 Let A;B 2 Sn. ThenA w� B , fAj (i) � fBj (i) for every i 2 N and j = 1; : : : ; n:3 Preliminaries to introduce velocityBy de�ning velocity, we assign a positive real number to every neighbourhoodsequence. In this section we give some natural conditions, which should be3



met by this concept.(I) Velocity must be sensitive for the behavior of the sequences in di�erentdimensions.It can happen that a sequence spreads "faster" than another one in hig-her dimensions, but they have the same "speed" in lower dimensionalsubspaces. For example, in 3D the sequences (3,3,3,3,...) and (2,2,2,2,...)have the same velocity on the planes fx; yg, fx; zg, fy; zg de�ned by thecoordinate axes; or the sequences (1,3,1,3,...) and (2,2,2,2,...) behave dif-ferently in the subspaces of Z3. These features should be reected in thede�nition of velocity.(II) The elements of the sequences must be weighted with a suitable weightfunction.There are two reasons to establish this condition. First, it is natural toconsider the initial elements of the sequences more important than theelements which occur later. The second reason comes from theoreticalnecessity. Namely, if we want to take into consideration all elements ofthe sequences, then we have to guarantee the convergence of certain sumsor series of the (weighted) elements of the sequences.(III) Velocity must be de�ned such that it �ts the natural ordering.This condition is very evident: velocity should preserve the ordering w�. Ifa neighbourhood sequence is faster than another one, its velocity shouldbe larger as well. As w� is only a partial ordering, the opposite statementcannot be true. However, our velocity concept, introduced in the nextsection, will have the nice property that in a certain sense this oppositestatement also holds (cf. Theorem 13).4 Assigning velocity to neighbourhood sequencesAccording to (II), we �rst give the concept of a weight system, which will beappropriate in our further investigations.De�nition 3 Let n 2 N. The set of functions Æj : N ! R (1 � j � n) iscalled a weight system, if the following three conditions hold:� Æj(i) > 0 (1 � j � n; i 2 N),� 1Pi=1 Æj(i) <1 (1 � j � n),� Æj is monotone decreasing (1 � j � n).In order to meet (I), we introduce the concept of velocity in two steps. First,we assign an n-tuple to every neighbourhood sequence. The elements of this4



n-tuple reect the "velocity" of the given neighbourhood sequence in the subs-paces of Zn of dimensions from 1 to n. Then, we de�ne one descriptive velocityvalue.De�nition 4 Let A 2 Sn, and Æj (1 � j � n) be a weight system. Thej-dimensional velocity of A is de�ned asvAj = 1Xi=1 aj(i)Æj(i):Remark 5 Let T be the linear space of bounded real sequences over R, andlet Æj (1 � j � n) be a weight system. It is well-known (see e.g., [4]) that forevery j, with the normjj(xi)1i=1jj = 1Xi=1 jxijÆj(i); ((xi)1i=1 2 T );T becomes a Banach space. Thus, for any A = (a(i))1i=1, vAj could be de�nedas vAj = jj(aj(i))1i=1jj.Remark 6 For every A 2 Sn we have1Xi=1 Æj(i) � vAj � n 1Xi=1 Æj(i):We de�ne the velocity of A by the help of the j-dimensional velocities.De�nition 7 Let A 2 Sn. The velocity of A is given byvA = 1n nXj=1 vAj :Remark 8 By the de�nition of vAj (j = 1; : : : ; n) and vA, we have that forevery " > 0 there exists some k0 2 N such that for any k > k0vAj � kXi=1 aj(i)Æj(i) < "; (j = 1; : : : ; n);and also vA � 1n nXj=1 kXi=1 aj(i)Æj(i) < ":This shows that regardless of the system Æj, the j-dimensional velocities andthe velocity of A is "determined" by the �rst "few" terms of A.5



In the next section we analyze the behavior of the velocity with respect tovarious weight systems. Now, we show how conditions (I), (II) and (III) aremet by this velocity concept.The velocity vector (vA1 ; vA2 ; : : : ; vAn ), thus also vA is obviously sensitive for thebehavior of the sequence A in subspaces of Zn of dimensions from 1 to n.Thus, (I) is satis�ed. As we use a weight system to de�ne (vA1 ; vA2 ; : : : ; vAn ) andvA, the requirements of (II) are also met. The following theorem veri�es thatour velocity concept satis�es condition (III), too.Theorem 9 Let A;B 2 Sn with A w� B, and let Æj (j = 1; : : : ; n) be aweight system. Then, vAj � vBj for every j = 1; : : : ; n.PROOF. Put A = (a(i))1i=1 and B = (b(i))1i=1, and �x some j with 1 � j � n.Let k 2 N be arbitrary. Since Æj is monotone decreasing, we can writeÆj(k � 1) = Æj(k) + "j(k � 1);Æj(k � 2) = Æj(k) + "j(k � 1) + "j(k � 2);...Æj(1) = Æj(k) + "j(k � 1) + "j(k � 2) + : : :+ "j(1);with "j(m) � 0 (m = 1; : : : ; k � 1). Put "j(k) = Æj(k). Using these relations,by a simple calculation we getkXi=1 aj(i)Æj(i)� kXi=1 bj(i)Æj(i) = kXm=1 "j(m) mXh=1 aj(h)� mXh=1 bj(h)! : (?)Observe that as mPh=1 aj(h) = fAj (m) and mPh=1 bj(h) = fBj (m), by Theorem 2A w� B implies mXh=1 aj(h) � mXh=1 bj(h)for every m with 1 � m � k. As "j(m) � 0 (m = 1; : : : ; k), (?) yieldskXi=1 aj(i)Æj(i) � kXi=1 bj(i)Æj(i):By letting k !1, we obtain vAj � vBj . 2Remark 10 By the de�nition of the velocity, the above theorem implies thatif A w� B, then vA � vB.In the following two remarks we explain why some alternative ways of intro-ducing velocity would not be appropriate.6



Remark 11 The monotonity of Æj is necessary to have Theorem 9. Indeed,let A;B 2 S2 be de�ned byA = (2; 1; 1; 1; 1; : : :) and B = (1; 2; 1; 1; 1; : : :):Moreover, let Æ1 be arbitrary, and putÆ2(i) = 8><>: 14 ; if i = 1,12i�1 ; otherwise.Clearly, A w� B holds, but vA2 = 64 and vB2 = 74 . Thus, vB2 � vA2 , and alsovB � vA in this case.Remark 12 It would be possible to de�ne vAj in a more general way. Namely,for any m > 0 we could putvAj;m =  1Xi=1(aj(i))mÆj(i)! 1m :However, on one hand the case m < 1 does not seem to be interesting. Onthe other hand, in case of m > 1 it is easy to �nd sequences A;B 2 Sn anda weight system Æj (j = 1; : : : ; n) such that Theorem 9, hence condition (III)fails for them.As one can easily see, it can happen that with some weight system Æj, vAj � vBjfor every j = 1; : : : ; n, but A w� B does not hold. However, in some sense wecan reverse Theorem 9. More precisely, we haveTheorem 13 Let A;B 2 Sn. If for any weight system Æj (1 � j � n), vAj �vBj holds for all j = 1; : : : ; n, then A w� B.PROOF. Let k 2 N be arbitrary, and for every j with 1 � j � n setÆ(k)j (i) = 8><>: 1; if i � k,12i�kn ; otherwise.Clearly, the system Æ(k)j (j = 1; : : : ; n) is a weight system. Thus, by our as-sumptions we have1Xi=1 aj(i)Æ(k)j (i) = vAj � vBj = 1Xi=1 bj(i)Æ(k)j (i):7



Hence, for every j = 1; : : : ; nkXi=1 aj(k) + 1Xh=k+1 aj(h)2h�kn � kXi=1 bj(k) + 1Xh=k+1 bj(h)2h�knholds. Replacing kPi=1 aj(k) and kPi=1 bj(k) by fAj (k) and fBj (k), respectively, weget fAj (k)� fBj (k) � 1Xh=k+1 bj(h)2h�kn � 1Xh=k+1 aj(h)2h�kn � 1n � 1:Since fAj (k)� fBj (k) is an integer, we may infer thatfAj (k)� fBj (k) � 0:By Theorem 2 the proof is complete. 2Remark 14 It can be easily veri�ed that the condition vAj � vBj for all j =1; : : : ; n cannot be replaced by vA � vB.5 Examples of weight systemsIn this section we give examples of weight systems, and analyze the behaviorof the velocity concept. We investigate exponentially decreasing systems, andcalculate the velocity of some concrete sequences with respect to di�erentweight systems.Let c > 1, and putÆj(i) = 1ci�1 for every j = 1; : : : ; n and i 2 N:Obviously, Æj is a weight system with1Xi=1 Æj(i) = cc� 1 (j = 1; : : : ; n):Consider the nD-neighbourhood sequencesA = (h; 1; 1; 1; 1; : : :) and B = (1; n; n; n; n; : : :); where 2 � h � n:Then vA = vAj = 1c� 1 + h and vB = vBj = nc� 1 + 1 (j = 1; : : : ; n):8



Clearly, the sequences A and B cannot be compared by the ordering w�. Weshow how the relation between the velocity values of A and B change accordingto the choice of the parameter c.First, suppose that c > n. Then, we havevA = vAj = 1c� 1 + h � 1c� 1 + 2 = cc� 1 + 1 > nc� 1 + 1 = vBj = vB:Using this weight system we obtain a very strong condition, namely thatvA > vB if and only if A precedes B lexicographically.Now, let c = 2. In this case we havevA = vAj = 1 + h � 1 + n = vBj = vB;with equality only for h = n.Finally, set c < 2. Now, by a simple calculation, we get vB = vBj > vAj = vA.Summarizing, using such a weight system, we can get rid of the (sometimesexcessive) importance of the �rst "few" elements of a neighbourhood sequence.Especially, for every k 2 N , by choosing a suitable c, we can have vBj > vAj forthe nD-sequencesA = (n ; n ; : : : ; n| {z }k ; 1; 1; 1; : : :) and B = (1 ; 1 ; : : : ; 1| {z }k ; n; n; n; : : :):On the other hand, by the appropriate choice of c we can give large signi�canceof the �rst "few" elements of the neighbourhood sequences, ignoring their laterelements.By choosing other (e.g., polinomially decreasing) types of weight systems wecan have di�erent properties. The weight system should be chosen appropria-tely for the actual application, as we can see from a practical example givenin the following section.6 Application for distributing informationIn this section we give an application scheme of neighbourhood sequences andvelocity in a network model, where the members of the network are the pointsof Z2. As we mentioned in the introduction, neighbourhood sequences andvelocity can be introduced also for other types of grids. Hence, this applicationscheme could be used in such cases, too.9



The network model shown in Figure 1 has an information source at the center(origin) of the system, which distributes information to the other members(clients) of the network. The system is based on priority, that is if a client is"closer" to the origin than another one, it has greater priority, and receivesthe information earlier. We can think of subscription systems for instance,where clients pay di�erent fees according to their position with respect to theinformation source.It is worth indexing the clients according to their "reachability" from the ori-gin. For this purpose, if a client sits on the point (x; y) 2 Z2, then its index willbe given by the �rst few (signi�cant) elements of the slowest neighbourhoodsequence A, for which d((x; y); (0; 0);A) is minimal. The clients with the sameindex have equal priority, so they should pay the same fee (especially, clientsindexed by "1" have the greatest priority).

Fig. 1. 2D priority-based model for distributing informationIn this model, we use 2D-neighbourhood sequences to deliver the informationto the clients. Suppose that the cost of distributing information decreases withthe number of 2-s in the chosen neighbourhood sequence. The most expensivesequence is (2; 2; : : :), while the cheapest one is (1; 1; : : :). Knowing the im-portance of the information, we have to choose one of the cheapest sequences,which is still "fast" enough. That is, we take a neighbourhood sequence, whosevelocity �ts the importance of the information to be sent.10



By choosing an appropriate weight system, we can increase and decrease theinitial priority of the clients in the network. If we do not take much care of theclients residing far from the source, we need to choose a weight system, whichdecreases rapidly. In the opposite case we can take a very slowly decreasingweight system.This network model can be easily extended to Z3. In this case, we can takemore advantage of the behavior of neighbourhood sequences in lower dimen-sional subspaces. If we know in advance that a special type of informationis important only for a group of clients, we can place these clients onto orclose to the (x; y), (y; z) and (x; z) planes. Thus, for the distribution of thisspecial kind of information we can choose quite a cheap neighbourhood se-quence, which consists of mainly 1 and 2 values. To have a similar possibilityin 2D, we have to put such clients near the coordinate axes, and use sequencescontaining mostly 1-s.7 Metric space of the neighbourhood sequencesWe introduce a metric on the set of neighbourhood sequences in a similarfashion as we did it for velocity.De�nition 15 Let � = fÆj j j = 1; : : : ; ng be a weight system and A;B 2 Sn.The distance %� of these sequences is de�ned by%�(A;B) = 1n nXj=1 1Xi=1 jaj(i)� bj(i)j Æj(i):Remark 16 One can easily verify that in case of any weight system �, thefunction %� is a metric on Sn.Remark 17 The metric space (Sn; %�) is bounded. Its diameter isdiam(Sn; %�) = %� ( (1; 1; : : :); (n; n; : : :) ) = n� 1n nXj=1 1Xi=1 Æj(i):In what follows, we establish some useful and interesting properties of thesemetric spaces.Theorem 18 For any weight system �, (Sn; %�) is a complete metric space.PROOF. Let � be any weight system. We prove the theorem by showingthat every Cauchy sequence in Sn has a limit. We actually construct this limit11



sequence in the proof. Let (Ak)1k=1 be a Cauchy sequence in (Sn; %�), and letm 2 N . By the de�nition of %�, there exists some "m > 0, such that for anyB;C 2 Sn, %�(B;C) < "m implies that the �rst m elements of B and Ccoincide. By the Cauchy-property of (Ak)1k=1, there exists some k0 2 N suchthat for every k1; k2 > k0, %�(Ak1; Ak2) < "m, whence the �rst m elements ofthe neighbourhood sequences Ak1 and Ak2 are identical. De�ne the sequenceA in the following way. For every m 2 N choose a k0 2 N , such that the m-thelements of Ak1 and Ak2 with k1; k2 � k0 are equal. Let a(m) be this element,and put A = (a(m))1m=1. Clearly, A is well de�ned. By the construction of Awe immediately get that limk!1Ak = A. 2A sequence (Ak)1k=1 is monotone increasing (resp. decreasing), if Ai+1 w� Ai(resp. Ai w� Ai+1) holds for every i 2 N .Theorem 19 Every monotone increasing or decreasing sequence (Ak)1k=1, withAk 2 Sn (k 2 N) converges.PROOF. As in the previous proof, we construct the limit of (Ak)1k=1. Wemay assume that (Ak)1k=1 is monotone increasing, the proof in the other caseis similar.Put Ak = a(k)(i) (i 2 N). As (Ak)1k=1 is increasing, so is (a(k)(1))1k=1. Asn � a(k)(1) (k 2 N), there exists some k0 2 N such that for any k1; k2 � k0we have a(k1)(1) = a(k2)(1). Put a(1) = a(k0)(1). Suppose that a(i) is alreadygiven for i � m, and de�ne a(m + 1) in the following way. Choose t0 2 Nsuch that for t1; t2 � t0 and 1 � i � m, a(t1)(i) = a(t2)(i) holds. Since (Ak)1k=t0is increasing, so is the sequence (a(k)(m + 1))1k=t0. As n � a(k)(m + 1) forevery k 2 N , there exists some s0 2 N such that for any s1; s2 � s0 we havea(s1)(m+ 1) = a(s2)(m + 1). Put a(m + 1) = a(s0)(m + 1).From the construction of A = (a(m))1m=1 it is clear that for every m 2 N thereexists some k0 2 N , such that if k � k0, the �rst m elements of Ak and Acoincide. Thus, limk!1Ak = A, and the theorem follows. 2The next result shows that the Bolzano-Weierstrass theorem is true in theconstructed metric spaces.Proposition 20 For any weight system �, every subset of (Sn; %�) of in�nitecardinality has an accumulation point.PROOF. Let H be an in�nite subset of Sn. We construct an accumulationpoint of H. Let a(1) be a number which is the �rst element of in�nitely many12



sequences in H. Suppose that a(i) with i � m is already de�ned. Let a(m+1)be a number which is the (m+1)-th element of in�nitely many such sequencesin H, whose �rst m elements are a(1); a(2); : : : ; a(m). Put A = (a(m))1m=1.Clearly, A is an accumulation point of H. 2Periodic neighbourhood sequences can play important role in certain appli-cations. Our last result shows that they form a dense subset of (Sn; %�). Asthe set of periodic neighbourhood sequences is countable, this also yields that(Sn; %�) is a separable metric space.Theorem 21 For any weight system �, the set of periodic neighbourhoodsequences is dense in (Sn; %�).PROOF. Let A 2 Sn and " > 0. By the de�nition of %� there exists somek0 2 N , such that if the �rst k0 elements of B 2 Sn is the same as those of A,then %�(A;B) < " holds. So put b(i) = a(i mod k0) (i 2 N), and B = (b(i))1i=1.Clearly, B is periodic and %�(A;B) < ", thus the proof is complete. 28 ConclusionIn this paper, we introduce velocity and metric for the set of neighbourhoodsequences. They �t well to the structure of neighbourhood sequences, andgeneralize some old notions in some sense. By their help we can compareneighbourhood sequences more precisely, than using only the natural partialordering relation. We also work out a possible application scheme for distri-buting information.AcknowledgementsThe authors are grateful to Professor M�aty�as Arat�o for his valuable remarks.References[1] Das, P.P.: Lattice of octagonal distances in digital geometry, Pattern RecognitionLett. 11 (1990), 663-667.[2] Das, P.P., Chakrabarti P.P. and Chatterji B.N.: Distance functions in digitalgeometry, Inform. Sci. 42 (1987), 113-136.13
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