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Abstract

Das et al. [2] defined the notion of periodic neighbourhood sequences. They also
introduced a natural ordering relation J* for such sequences. Fazekas et al. [3] ge-
neralized the concept of neighbourhood sequences, by dropping periodicity. They
also extended the ordering to these generalized neighbourhood sequences. The re-
lation J* has some unpleasant properties (e.g., it is not a complete ordering). In
certain applications it can be useful to compare any two neighbourhood sequences.
For this purpose, in the present paper we introduce a norm-like concept, called ve-
locity, for neighbourhood sequences. This concept is in very close connection with
the natural ordering relation. We also define a metric for neighbourhood sequences,
and investigate its properties.
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1 Introduction

Distance functions are used in many parts of digital geometry. They are usu-
ally defined by digital motions, when we can move in the digital space from one
point to another, if they are neighbours in some sense. Rosenfeld and Pfaltz
[7] introduced two types of motions in Z?, the cityblock and chessboard moti-
ons. The cityblock motion allows only horizontal and vertical steps, while the
chessboard motion diagonal movements as well. By these motions Rosenfeld
and Pfaltz defined the distances d4 and dg, respectively, as the number of steps
needed to get from one point to another. To obtain a better approximation of
the Euclidean distance they recommended the alternate use of the cityblock
and chessboard motions.



By allowing arbitrary periodic mixture of the cityblock and chessboard moti-
ons, Das et al. [2] introduced the concept of periodic neighbourhood sequences,
and generalized it to arbitrary dimension. A distance function can be attached
to any neighbourhood sequence A by defining the distance of two points as
the number of A-steps needed to get from one of them to the other. In [2] the
authors provided a criterion to decide when the distance function correspon-
ding to A is a metric. They also introduced a natural ordering relation on the
set of periodic neighbourhood sequences in the following way. Given two such
sequences A and B, A is "faster” than B, if for every two points p and ¢, the
A-distance is less than or equal to the B-distance of these points. The name
of this relation expresses that in this case A spreads faster in the digital space
than B. Das [1] studied the structure of the set of periodic neighbourhood
sequences with respect to this natural ordering.

By dropping the condition of periodicity, A. Fazekas et al. [3] generalized the
concept of neighbourhood sequences. They extended the ”faster” relation to
these generalized neighbourhood sequences, and investigated its properties. It
turned out that this natural ordering has some unpleasant properties. It fails
to be a complete ordering on the set of neighbourhood sequences, moreover,
the structure obtained is not even a lattice in higher dimension. However, in
certain applications it can be useful to compare any two neighbourhood se-
quences, i.e. to decide which one spreads ”faster”. For this purpose, in this
article we introduce a norm-like concept, called velocity, on the set of neigh-
bourhood sequences, and investigate its properties. This concept has to be
introduced in a way to fit the relation ”faster”, so we need some prelimina-
ries before defining velocity. Further, we define a metric for neighbourhood
sequences.

In this paper we deal with neighbourhood sequences defined on Z". However,
there can be applications, where the grid points form another kind of structure
(e.g., triangular or hexagonal). For a survey on planar grids, see [6]. The
concept of neighbourhood sequences can be easily generalized to these grids,
see [5] for the cases of triangular and hexagonal grids. The investigations and
concepts of the present paper can be extended to these structures, too.

The structure of this paper is as follows. In the second section we give our
notation, and provide some properties of the concepts introduced. In the third
section we clarify which conditions should be met by the notion of velocity. In
Section 4 the concept of velocity is introduced, and some important properties
of this notion are proved. In Section 5 we give some theoretical examples to
illustrate the behaviour of velocity, and in the sixth section we show how
this concept can be applied for distributing information in a general network
model. In Section 7 we define a metric on the set of neighbourhood sequences,
and study its properties.



2 Notation and basic concepts

In this section, we recall some definitions and notation from [2] and [3] concer-
ning neighbourhood sequences. In what follows, n denotes a positive integer.

Definition 1 Let p be a point in Z"™. The i-th coordinate of p is indicated by
Pri(p) (1 <i<n). Let k be an integer with 0 < k < n. The points p, q € 7"
are called k-neighbours, if the following two conditions hold:

e |[Pri(p) —Pri(¢)| <1 (1<i<n),
e 3 |Pri(p) - Pri(q)| < .

The sequence A = (a(i))$2,, where 1 < a(i) < n for all i € N, is called an
n-dimensional (shortly nD) neighbourhood sequence. A is periodic, if for some
€N, a(i+1)=a(i) (i € N). Forevery i € Nand j =1,...,n put
a;(i) = min(a(i),j) and fJA(z) = Z a;j(k).
k=1
The set of the nD-neighbourhood sequences will be denoted by S,,.
Let p, ¢ € Z", and A € S,,. The point sequence p = pg, p1,...,Pm = ¢, where
pi—1 and p; are a(i)-neighbours in Z" (1 < i < m), is called an A-path from

p to ¢. The length of the A-path is m. The A-distance d(p, q; A) of p and ¢ is
defined as the length of the shortest A-path between them.

A natural partial ordering relation on S, can be introduced in the following
way (see [2] and [3]). For A, B € S,, we define the relation J* by

ATJ*B &  dp,q¢;A) <d(p,g;B) for all p,q € Z".

In case of A J* B we say that A is faster than B. There is a strong connection
between this relation and the values f;(7), shown by the following result from

[3].
Theorem 2 Let A,B € S,,. Then

AJ*B & fJA(i)ijB(i) for everyi € Nandj=1,...,n.

3 Preliminaries to introduce velocity

By defining velocity, we assign a positive real number to every neighbourhood
sequence. In this section we give some natural conditions, which should be



met by this concept.

(D)

(1)

(I11)

Velocity must be sensitive for the behavior of the sequences in different
dimensions.

It can happen that a sequence spreads ”faster” than another one in hig-
her dimensions, but they have the same "speed” in lower dimensional
subspaces. For example, in 3D the sequences (3,3,3,3,...) and (2,2,2,2,...)
have the same velocity on the planes {z,y}, {x, 2}, {y, 2z} defined by the
coordinate axes; or the sequences (1,3,1,3,...) and (2,2,2,2,...) behave dif-
ferently in the subspaces of Z3. These features should be reflected in the
definition of velocity.

The elements of the sequences must be weighted with a suitable weight
function.

There are two reasons to establish this condition. First, it is natural to
consider the initial elements of the sequences more important than the
elements which occur later. The second reason comes from theoretical
necessity. Namely, if we want to take into consideration all elements of
the sequences, then we have to guarantee the convergence of certain sums
or series of the (weighted) elements of the sequences.

Velocity must be defined such that it fits the natural ordering.

This condition is very evident: velocity should preserve the ordering J*. If
a neighbourhood sequence is faster than another one, its velocity should
be larger as well. As J* is only a partial ordering, the opposite statement
cannot be true. However, our velocity concept, introduced in the next
section, will have the nice property that in a certain sense this opposite
statement also holds (cf. Theorem 13).

4 Assigning velocity to neighbourhood sequences

According to (IT), we first give the concept of a weight system, which will be
appropriate in our further investigations.

Defi

nition 3 Let n € N. The set of functions 6; : N - R (1 < j < n) is

called a weight system, if the following three conditions hold:

[ ] (SJ(

¢ 05

i)>0 (1<j<mn,i€N),
§;(1) < oo (1 <j<n),

is monotone decreasing (1 < j <n).

In order to meet (I), we introduce the concept of velocity in two steps. First,
we assign an n-tuple to every neighbourhood sequence. The elements of this



n-tuple reflect the ”velocity” of the given neighbourhood sequence in the subs-
paces of Z™ of dimensions from 1 to n. Then, we define one descriptive velocity
value.

Definition 4 Let A € S, and §; (1 < j < n) be a weight system. The
j-dimensional velocity of A is defined as

o0

Remark 5 Let T be the linear space of bounded real sequences over R, and
let 0; (1 <j<n)beaweight system. It is well-known (see e.g., [4]) that for
every j, with the norm

(@)l =3 i), ((@a)iy €T,
i=1
T becomes a Banach space. Thus, for any A = (a(i))2,, v} could be defined
as vjt = [[(a; (i), I
Remark 6 For every A € S,, we have

i—=1 i=1

We define the velocity of A by the help of the j-dimensional velocities.

Definition 7 Let A € S,,. The velocity of A is given by

n

S o,

j=1

UA:

Remark 8 By the definition of v;‘ (j =1,...,n) and v*, we have that for
every € > 0 there exists some ko € N such that for any k > ky

and also

This shows that regardless of the system ¢;, the j-dimensional velocities and
the velocity of A is "determined” by the first “few” terms of A.



In the next section we analyze the behavior of the velocity with respect to
various weight systems. Now, we show how conditions (I), (II) and (III) are
met by this velocity concept.

The velocity vector (v, v3', ..., v7), thus also v is obviously sensitive for the

behavior of the sequence A in subspaces of Z" of dimensions from 1 to n.

A A A

Thus, (I) is satisfied. As we use a weight system to define (vi',vs', ..., v7) and

v4, the requirements of (II) are also met. The following theorem verifies that
our velocity concept satisfies condition (III), too.

Theorem 9 Let A,B € S, with A J* B, and let 6; (j = 1,...,n) be a
weight system. Then, vf > UjB for every 3 =1,...,n.

PROOF. Put A = (a(i))2, and B = (b(7))$2,, and fix some j with 1 < j < n.
Let k € N be arbitrary. Since J; is monotone decreasing, we can write

0j(k = 1) = 0;(k) +&;(k = 1),

0j(k —2) = 0;(k) +ej(k = 1) +¢;(k - 2),

§;(1) =0;(k) + ek —1)+e;(k—2)+...+¢5(1),
with ¢;(m) >0 (m=1,...,k—1). Put ¢;(k) = 0,(k). Using these relations,
by a simple calculation we get

S a5 - L h05(0 = X eim) (S s - 3o u0) - (4

Observe that as 5 a;(h) = fA(m) and 3 b;(h) = fP(m), by Theorem 2
h=1 h=1
A 3J* B implies

h=1

k

> a;(0)0;(i) = 3 b;(i)9;(0).

=1 1=1

By letting k& — oo, we obtain v}! > vf. O

Remark 10 By the definition of the velocity, the above theorem implies that
if A J* B, then v > vB.

In the following two remarks we explain why some alternative ways of intro-
ducing velocity would not be appropriate.



Remark 11 The monotonity of 0; is necessary to have Theorem 9. Indeed,
let A, B € S5 be defined by

A=(2,1,1,1,1,..) and B=1(1,2, 1,1, 1,...).

Moreover, let d; be arbitrary, and put

1 . .
. 4 Zf 1= 1;
NOER
21%1, otherwise.
Clearly, A J* B holds, but vi' = & and v = I. Thus, v¥ > v§', and also

vB > vt in this case.

Remark 12 [t would be possible to define v;‘ in a more general way. Namely,
for any m > 0 we could put

o = (S50 g

=1

However, on one hand the case m < 1 does not seem to be interesting. On
the other hand, in case of m > 1 it is easy to find sequences A, B € S, and
a weight system ¢; (j =1,...,n) such that Theorem 9, hence condition (III)
fails for them.

As one can easily see, it can happen that with some weight system 4, vf > v]B

for every j =1,...,n, but A J* B does not hold. However, in some sense we
can reverse Theorem 9. More precisely, we have

Theorem 13 Let A, B € S,. If for any weight system ¢; (1 < j < n), v;‘ >
vf holds for all j =1,...,n, then A 3* B.

PROOF. Let k£ € N be arbitrary, and for every j with 1 < j < n set

1, if i<k,

ﬁ , otherwise.

Clearly, the system 5](k) (j = 1,...,n) is a weight system. Thus, by our as-
sumptions we have

Z a; (Z)(Sy(k)(l) = UJA > U]B = Z b (l)éy(k)(l)
i=1 =1

~J



Hence, for every j =1,...,n

k
SIS AR

h k
i—1 h=k+1 i—1 h= k+12 n

k k
holds. Replacing - a;(k) and ¥ b;(k) by fi'(k) and f(k), respectively, we

get
ICREATESS ik L0 el

h=k+1

Since f{'(k) — f] (k) is an integer, we may infer that

k) = f7(k) 20

By Theorem 2 the proof is complete. O

Remark 14 [t can be easily verzﬁed that the condition v > v for all j =
1,...,n cannot be replaced by v > vP.

5 Examples of weight systems

In this section we give examples of weight systems, and analyze the behavior
of the velocity concept. We investigate exponentially decreasing systems, and
calculate the velocity of some concrete sequences with respect to different
weight systems.

Let ¢ > 1, and put

1

6j(1) = —— forevery j=1,...,n and i€ N
c

Obviously, 4, is a weight system with

o0

;5j(¢):cf1 (Gj=1,...,n).

Consider the nD-neighbourhood sequences
A=(h, 1,1, 1,1, ...)and B=(1, n, n, n, n, ...), where 2 < h <n.

Then

oo



Clearly, the sequences A and B cannot be compared by the ordering J*. We
show how the relation between the velocity values of A and B change according
to the choice of the parameter c.

First, suppose that ¢ > n. Then, we have

1 1 c n
A A B B
v cr c—1+ _c—1+ c—1+ c—1+ v; v
Using this weight system we obtain a very strong condition, namely that
v > vP if and only if A precedes B lexicographically.

Now, let ¢ = 2. In this case we have
vA:vf:I-i-hgl-i-n:v]B:vB,

with equality only for h = n.

Finally, set ¢ < 2. Now, by a simple calculation, we get v? = U]-B > v;‘ =4,

Summarizing, using such a weight system, we can get rid of the (sometimes
excessive) importance of the first ”few” elements of a neighbourhood sequence.
Especially, for every k € N, by choosing a suitable ¢, we can have Uf > UJA for
the nD-sequences

A=Mm,n,... ,n, 1, 1,1, ...) and B=(1,1,... ,1, n, n, n, ...).
S——— S—
k k

On the other hand, by the appropriate choice of ¢ we can give large significance
of the first ”few” elements of the neighbourhood sequences, ignoring their later
elements.

By choosing other (e.g., polinomially decreasing) types of weight systems we
can have different properties. The weight system should be chosen appropria-
tely for the actual application, as we can see from a practical example given
in the following section.

6 Application for distributing information

In this section we give an application scheme of neighbourhood sequences and
velocity in a network model, where the members of the network are the points
of Z?. As we mentioned in the introduction, neighbourhood sequences and
velocity can be introduced also for other types of grids. Hence, this application
scheme could be used in such cases, too.



The network model shown in Figure 1 has an information source at the center
(origin) of the system, which distributes information to the other members
(clients) of the network. The system is based on priority, that is if a client is
"closer” to the origin than another one, it has greater priority, and receives
the information earlier. We can think of subscription systems for instance,
where clients pay different fees according to their position with respect to the
information source.

It is worth indexing the clients according to their "reachability” from the ori-
gin. For this purpose, if a client sits on the point (z,y) € Z?, then its index will
be given by the first few (significant) elements of the slowest neighbourhood
sequence A, for which d((z,y), (0,0); A) is minimal. The clients with the same
index have equal priority, so they should pay the same fee (especially, clients
indexed by ”1” have the greatest priority).
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Fig. 1. 2D priority-based model for distributing information

In this model, we use 2D-neighbourhood sequences to deliver the information
to the clients. Suppose that the cost of distributing information decreases with
the number of 2-s in the chosen neighbourhood sequence. The most expensive
sequence is (2,2,...), while the cheapest one is (1,1,...). Knowing the im-
portance of the information, we have to choose one of the cheapest sequences,
which is still ”fast” enough. That is, we take a neighbourhood sequence, whose
velocity fits the importance of the information to be sent.
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By choosing an appropriate weight system, we can increase and decrease the
initial priority of the clients in the network. If we do not take much care of the
clients residing far from the source, we need to choose a weight system, which
decreases rapidly. In the opposite case we can take a very slowly decreasing
weight system.

This network model can be easily extended to Z3. In this case, we can take
more advantage of the behavior of neighbourhood sequences in lower dimen-
sional subspaces. If we know in advance that a special type of information
is important only for a group of clients, we can place these clients onto or
close to the (x,y), (y,2) and (x, z) planes. Thus, for the distribution of this
special kind of information we can choose quite a cheap neighbourhood se-
quence, which consists of mainly 1 and 2 values. To have a similar possibility
in 2D, we have to put such clients near the coordinate axes, and use sequences
containing mostly 1-s.

7 Metric space of the neighbourhood sequences

We introduce a metric on the set of neighbourhood sequences in a similar
fashion as we did it for velocity.

Definition 15 Let A ={§; | j =1,...,n} be a weight system and A, B € S,,.
The distance on of these sequences is defined by

= LSS () — by (1) 650,

j=1li=1

3|H

Remark 16 One can easily verify that in case of any weight system A, the
function oa 1s a metric on S,,.

Remark 17 The metric space (S,, 0a) is bounded. Its diameter is

Zn:ifsj(i)

j=14i=1

-1

diam(Sp, 0a) = oa ( (1, 1, ...), (n, n,

In what follows, we establish some useful and interesting properties of these
metric spaces.

Theorem 18 For any weight system A, (S, 0a) is a complete metric space.

PROOF. Let A be any weight system. We prove the theorem by showing
that every Cauchy sequence in S, has a limit. We actually construct this limit

11



sequence in the proof. Let (Ax)52, be a Cauchy sequence in (S,, o), and let
m € N. By the definition of pa, there exists some ¢,, > 0, such that for any
B,C € S,, oa(B,C) < &, implies that the first m elements of B and C'
coincide. By the Cauchy-property of (Ax)2,, there exists some kg € N such
that for every kq, ko > ko, oa(Ak,, Ak,) < €m, whence the first m elements of
the neighbourhood sequences Ay, and Aj, are identical. Define the sequence
A in the following way. For every m € N choose a ky € N, such that the m-th
elements of Ay, and Ay, with ki, ks > ky are equal. Let a(m) be this element,
and put A = (a(m))2_,. Clearly, A is well defined. By the construction of A
we immediately get that kli)rgo A, =A. O

A sequence (Ag)%2, is monotone increasing (resp. decreasing), if A; 11 3* A;
(resp. A; J* A;41) holds for every i € N.

Theorem 19 Every monotone increasing or decreasing sequence (Ay)5,, with
Ap € S, (k € N) converges.

PROOF. As in the previous proof, we construct the limit of (Aj)2,. We
may assume that (A;)32, is monotone increasing, the proof in the other case
is similar.

Put Ak = a® (i) (i € N). As (A;)$2, is increasing, so is (a®(1))22,. As
n > a®(1 ) (k € N) there exists some kg E N such that for any ki, ko > ko
we have a¥1)(1) = a*)(1). Put a(1) = a*0)(1). Suppose that a(i) is already
given for ¢+ < m, and define a(m + 1) in the following way. Choose t; € N
such that for ¢, ¢, > tg and 1 < i <m, a®™(i) = a(?) (i) holds. Since (Aj)$2,,
is increasing, so is the sequence (a¥)(m + 1)), . As n > a®(m + 1) for
every k € N, there exists some sqg € N such that for any s, sy > so we have
a®(m +1) = a®)(m +1). Put a(m + 1) = a®) (m + 1).

From the construction of A = (a(m))$o_, it is clear that for every m € N there
exists some ko € N, such that if & > kg, the first m elements of A, and A
coincide. Thus, klim A = A, and the theorem follows. O

— 00

The next result shows that the Bolzano-Weierstrass theorem is true in the
constructed metric spaces.

Proposition 20 For any weight system A, every subset of (Sp, oa) of infinite
cardinality has an accumulation point.

PROOF. Let H be an infinite subset of S,,. We construct an accumulation
point of H. Let a(1) be a number which is the first element of infinitely many

12



sequences in H. Suppose that a(i) with ¢ < m is already defined. Let a(m+ 1)
be a number which is the (m+1)-th element of infinitely many such sequences
in H, whose first m elements are a(1),a(2), ... ,a(m). Put A = (a(m))5_,.
Clearly, A is an accumulation point of H. O

Periodic neighbourhood sequences can play important role in certain appli-
cations. Our last result shows that they form a dense subset of (S, 0a). As
the set of periodic neighbourhood sequences is countable, this also yields that
(Sn, 0a) is a separable metric space.

Theorem 21 For any weight system A, the set of periodic neighbourhood
sequences is dense in (Sy, 0n)-

PROOF. Let A € S, and € > 0. By the definition of g there exists some
ko € N, such that if the first ky elements of B € S,, is the same as those of A,
then oA (A, B) < € holds. So put b(i) = a(i mod kg) (¢ € N), and B = (b(4))$2,.

Clearly, B is periodic and oa(A, B) < £, thus the proof is complete. O

8 Conclusion

In this paper, we introduce velocity and metric for the set of neighbourhood
sequences. They fit well to the structure of neighbourhood sequences, and
generalize some old notions in some sense. By their help we can compare
neighbourhood sequences more precisely, than using only the natural partial
ordering relation. We also work out a possible application scheme for distri-
buting information.
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